CWDM Metropolitan Multiple-Access Ring Network Based on Optical Packet Witching

CWDM Metropolitan Multiple-Access Ring Network Based on Optical Packet Witching We present a novel CWDM metropolitan multiple-access ring network based on optical switching of packets according to their wavelength. Each node within the MAN is identified by a combination of wavelength and numerical address. Hence, nodes are able to drop packets presenting a particular wavelength and numerical address, but can insert packets in any wavelength into the ring. This configuration allows wavelength sharing, as several nodes are identified by the same wavelength (but different numerical addresses), and simplifies switching requirements since the set of numerical addresses is reduced. We analyze the viability and scalability of such a network, determining the number of nodes supported by the network under different traffic scenarios and wavelength resources. The impact of switching time on network performance is also analyzed in order to determine which switching technology should be employed when implementing the network. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

CWDM Metropolitan Multiple-Access Ring Network Based on Optical Packet Witching

Loading next page...
 
/lp/springer_journal/cwdm-metropolitan-multiple-access-ring-network-based-on-optical-packet-p6yG3Ygcuc
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science + Business Media, Inc.
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-5328-9
Publisher site
See Article on Publisher Site

Abstract

We present a novel CWDM metropolitan multiple-access ring network based on optical switching of packets according to their wavelength. Each node within the MAN is identified by a combination of wavelength and numerical address. Hence, nodes are able to drop packets presenting a particular wavelength and numerical address, but can insert packets in any wavelength into the ring. This configuration allows wavelength sharing, as several nodes are identified by the same wavelength (but different numerical addresses), and simplifies switching requirements since the set of numerical addresses is reduced. We analyze the viability and scalability of such a network, determining the number of nodes supported by the network under different traffic scenarios and wavelength resources. The impact of switching time on network performance is also analyzed in order to determine which switching technology should be employed when implementing the network.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off