Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by filtered cathodic arc in dry face milling of cast iron

Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by... The aim of this work was to study the cutting performances and wear characteristics of Co-WC inserts coated with TiAlSiN and CrTiAlSiN by a filtered cathodic arc process in dry face milling of cast iron. Face milling experiments were conducted on turbine cast iron workpieces with TiAlSiN-coated, CrTiAlSiN-coated and uncoated inserts at various cutting speeds and numbers of inserts. The results showed that Ti-based coatings offered substantially better cutting performances for Co-WC inserts and could effectively protect the inserts over longer cutting lengths than uncoated ones. Specifically, the CrTiAlSiN coating offered the best cutting performances with the lowest workpiece surface roughness, the lowest flank wear rate and the longest maximum cutting length of 10 m, which was about 2.5 times as high as that of uncoated one owing to superior hardness relative to yielding and chemical properties. In addition, the workpiece quality in term of surface roughness was found to improve with increasing cutting speed in the range of 140–300 m/min and decreasing number of inserts ranging from 1 to 3. Microstructural analyses suggested that the CrTiAlSiN-coated inserts exhibited wear due to thermal cracking and partial delamination under high temperature ploughing abrasion while the TiAlSiN-coated ones displayed mainly ploughing abrasive flank wear behaviour, which resulted in a substantially lower flank wear rate than uncoated WC inserts that suffered from the combination of direct cutting and ploughing abrasive wear. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Cutting performances and wear characteristics of WC inserts coated with TiAlSiN and CrTiAlSiN by filtered cathodic arc in dry face milling of cast iron

Loading next page...
 
/lp/springer_journal/cutting-performances-and-wear-characteristics-of-wc-inserts-coated-lyloZ3reOo
Publisher
Springer London
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-018-2200-x
Publisher site
See Article on Publisher Site

Abstract

The aim of this work was to study the cutting performances and wear characteristics of Co-WC inserts coated with TiAlSiN and CrTiAlSiN by a filtered cathodic arc process in dry face milling of cast iron. Face milling experiments were conducted on turbine cast iron workpieces with TiAlSiN-coated, CrTiAlSiN-coated and uncoated inserts at various cutting speeds and numbers of inserts. The results showed that Ti-based coatings offered substantially better cutting performances for Co-WC inserts and could effectively protect the inserts over longer cutting lengths than uncoated ones. Specifically, the CrTiAlSiN coating offered the best cutting performances with the lowest workpiece surface roughness, the lowest flank wear rate and the longest maximum cutting length of 10 m, which was about 2.5 times as high as that of uncoated one owing to superior hardness relative to yielding and chemical properties. In addition, the workpiece quality in term of surface roughness was found to improve with increasing cutting speed in the range of 140–300 m/min and decreasing number of inserts ranging from 1 to 3. Microstructural analyses suggested that the CrTiAlSiN-coated inserts exhibited wear due to thermal cracking and partial delamination under high temperature ploughing abrasion while the TiAlSiN-coated ones displayed mainly ploughing abrasive flank wear behaviour, which resulted in a substantially lower flank wear rate than uncoated WC inserts that suffered from the combination of direct cutting and ploughing abrasive wear.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off