Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO2 fixation, lipid production and wastewater treatment

Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO2... Cultivation of microalgae in wastewater is a promising and cost-effective approach for both CO2 biofixation and wastewater remediation. In this study, a new strain of Coelastrum sp. was isolated from cattle manure leachate. The isolated microalgae were then cultivated in wastewater. Effects of different sCOD concentrations (600, 750, 900, 1050 mg L−1) and light intensities (1000, 2300, 4600, 6900 and 10000 Lux) on biomass production, CO2 consumption rate and nutrient removal from wastewater were investigated. The results showed that maximum cell growth and CO2 consumption rate were 2.71 g L−1 and 53.12 mg L−1 day−1, respectively, which were obtained in the wastewater with 750 mg L−1 sCOD and under the light intensity of 6900 Lux. The microalgae were able to completely consume all CO2 after incubation period of 4 days. The highest sCOD, total Kjeldahl nitrogen (TKN), nitrate and total phosphorous (TP) removal at such conditions were 53.45, 91.18, 87.51 and 100%, respectively. The lipid content of microalgal biomass was also measured under different light intensities; maximum amount of lipid was determined to be 50.77% under illumination of 2300 Lux. Finally, the CO2 consumption rate and biomass productivity of microalgae in semi-batch culture with continuous gas flow (CO2 6%:N2 94%) were investigated. The rate of CO2 consumption and biomass productivity were 0.528 and 0.281 g L−1 day−1, respectively. The TKN, nitrate, TP and sCOD removal rate of microalgae were 83.51, 80.91, 100, 41.4%, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bioprocess and Biosystems Engineering Springer Journals

Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO2 fixation, lipid production and wastewater treatment

Loading next page...
 
/lp/springer_journal/cultivation-of-newly-isolated-microalgae-coelastrum-sp-in-wastewater-aeDL3ypWv2
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Biotechnology; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering; Food Science
ISSN
1615-7591
eISSN
1615-7605
D.O.I.
10.1007/s00449-017-1887-7
Publisher site
See Article on Publisher Site

Abstract

Cultivation of microalgae in wastewater is a promising and cost-effective approach for both CO2 biofixation and wastewater remediation. In this study, a new strain of Coelastrum sp. was isolated from cattle manure leachate. The isolated microalgae were then cultivated in wastewater. Effects of different sCOD concentrations (600, 750, 900, 1050 mg L−1) and light intensities (1000, 2300, 4600, 6900 and 10000 Lux) on biomass production, CO2 consumption rate and nutrient removal from wastewater were investigated. The results showed that maximum cell growth and CO2 consumption rate were 2.71 g L−1 and 53.12 mg L−1 day−1, respectively, which were obtained in the wastewater with 750 mg L−1 sCOD and under the light intensity of 6900 Lux. The microalgae were able to completely consume all CO2 after incubation period of 4 days. The highest sCOD, total Kjeldahl nitrogen (TKN), nitrate and total phosphorous (TP) removal at such conditions were 53.45, 91.18, 87.51 and 100%, respectively. The lipid content of microalgal biomass was also measured under different light intensities; maximum amount of lipid was determined to be 50.77% under illumination of 2300 Lux. Finally, the CO2 consumption rate and biomass productivity of microalgae in semi-batch culture with continuous gas flow (CO2 6%:N2 94%) were investigated. The rate of CO2 consumption and biomass productivity were 0.528 and 0.281 g L−1 day−1, respectively. The TKN, nitrate, TP and sCOD removal rate of microalgae were 83.51, 80.91, 100, 41.4%, respectively.

Journal

Bioprocess and Biosystems EngineeringSpringer Journals

Published: Jan 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial