Cultivar-Specific Carbohydrate-Binding Properties of Lectins from Broad-Bean Seeds

Cultivar-Specific Carbohydrate-Binding Properties of Lectins from Broad-Bean Seeds Lectins were isolated and purified from three broad bean (Vicia faba L.) cultivars differing in the effectiveness of their symbiosis with root nodule bacteria (Rhizobium leguminosarum bv. viciae). From seeds of symbiotically effective cvs. Aushra and Daiva, we isolated only one lectin from each cultivar, whereas two lectins, Yu-1 and Yu-2, were isolated from seeds of symbiotically ineffective cv. Yugeva. Lectins from cvs. Aushra and Daiva were more active than lectins from cv. Yugeva and exhibited similar carbohydrate specificity. Methyl-α-D-mannopyranoside and trehalose were the most potent inhibitors of their hemagglutination activity. Lectin Yu-1 resembled them in its carbohydrate-binding properties. However, D-mannose, trehalose, and melecitose were its most effective inhibitors. Lectin Yu-2 differed substantially from these lectins. It exhibited an affinity for D-glucuronic acid, D-glucosamine, and 2-deoxy-D-glucose. In addition, it could interact with carbohydrates of the galactose family (2-deoxy-D-galactose, D-galactosamine, and lactose) and also with D-xylose and 2-deoxy-D-talose. Thus, lectins from cvs. Aushra and Daiva and also Yu-1 can be considered D-mannose/D-glucose-specific lectins, whereas Yu-2 lectin exhibited a combined carbohydrate specificity. The affinity of Yu-1 and Yu-2 lectins for their natural receptors, exopolysaccharides and lipopolysaccharides of broad-bean nodule bacteria, was twice as low as that of lectins from cvs. Aushra and Daiva. We believe that properties of seed lectins are an important cultivar-specific trait that determines host-plant (broad beans) specificity during the establishment of legume–rhizobia symbiosis. Russian Journal of Plant Physiology Springer Journals

Cultivar-Specific Carbohydrate-Binding Properties of Lectins from Broad-Bean Seeds

Loading next page...
Kluwer Academic Publishers-Plenum Publishers
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Life Sciences; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial