Cu(II) complexes with chiral ethylenediaminodioxime and propylenediaminodioxime, the derivatives of monoterpenoid α-pinene: Synthesis and structures

Cu(II) complexes with chiral ethylenediaminodioxime and propylenediaminodioxime, the derivatives... Copper(II) complexes with chiral ethylenediaminodioxime (H2L1) and propylenediaminodioxime (H2L2), the derivatives of terpenoid α-pinene, of the composition [Cu(H2L1)](NO3)2 (I) and [Cu(H2L2)NO3]NO3 (II) are synthesized and studied by X-ray diffraction method. The ionic structures of I and II consist of complex cations [Cu(H2L1)]2+ (I), [Cu(H2L2)NO3]+ (II), and outer-sphere anions NO 3 − . In the cation of compound I, the Cu2+ ion (C.N.4) coordinates four N atoms of tetradentate cycle-forming ligand H2L1 with anti-configuration. The coordination surrounding of the Cu atom is a trapezoidally distorted square. In the cation of compound II, the Cu2+ ion (C.N.5) coordinates the O atom of monodentate nitro group in addition to four N atoms of tetradentate cycle-forming ligand H2L2. The coordination polyhedron of the Cu atom has the shape of a distorted square pyramid N4O. Coordinated H2L2 molecule has amphi-configuration, which is responsible for the formation of hydrogen bond between the oxime groups. The complex cations and NO 3 − anions in structures I and II are linked into ionic ensembles by hydrogen bonds. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Coordination Chemistry Springer Journals

Cu(II) complexes with chiral ethylenediaminodioxime and propylenediaminodioxime, the derivatives of monoterpenoid α-pinene: Synthesis and structures

Loading next page...
 
/lp/springer_journal/cu-ii-complexes-with-chiral-ethylenediaminodioxime-and-jH7Vt52hCx
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
1070-3284
eISSN
1608-3318
D.O.I.
10.1134/S1070328406050071
Publisher site
See Article on Publisher Site

Abstract

Copper(II) complexes with chiral ethylenediaminodioxime (H2L1) and propylenediaminodioxime (H2L2), the derivatives of terpenoid α-pinene, of the composition [Cu(H2L1)](NO3)2 (I) and [Cu(H2L2)NO3]NO3 (II) are synthesized and studied by X-ray diffraction method. The ionic structures of I and II consist of complex cations [Cu(H2L1)]2+ (I), [Cu(H2L2)NO3]+ (II), and outer-sphere anions NO 3 − . In the cation of compound I, the Cu2+ ion (C.N.4) coordinates four N atoms of tetradentate cycle-forming ligand H2L1 with anti-configuration. The coordination surrounding of the Cu atom is a trapezoidally distorted square. In the cation of compound II, the Cu2+ ion (C.N.5) coordinates the O atom of monodentate nitro group in addition to four N atoms of tetradentate cycle-forming ligand H2L2. The coordination polyhedron of the Cu atom has the shape of a distorted square pyramid N4O. Coordinated H2L2 molecule has amphi-configuration, which is responsible for the formation of hydrogen bond between the oxime groups. The complex cations and NO 3 − anions in structures I and II are linked into ionic ensembles by hydrogen bonds.

Journal

Russian Journal of Coordination ChemistrySpringer Journals

Published: May 13, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off