Crystal violet adsorption on industrial waste (hog fuel ash): equilibrium kinetics with process optimization by response surface modeling

Crystal violet adsorption on industrial waste (hog fuel ash): equilibrium kinetics with process... The adsorptive removal of crystal violet from aqueous solution utilizing hog fuel ash, an industrial solid waste, available abundantly is reported in this article. The adsorbent is characterized by various physicochemical methods. Batch experiments are performed as functions of different process variables. The maximum removal (99.99%) was observed at equilibrium time (90 min). Results follow Freundlich isotherm (among five isotherms) and pseudo-second-order kinetics (among four kinetic models). The observed adsorption capacity of 17.002 mg/g is higher than many other reported waste materials. A three-factor full factorial central composite design scheme is adopted for optimizing different process variables and their interactions. The maximum removal predicted by response surface modeling is 99.99%, while corresponding experimental value is 99.13 ± 0.8895% (mean ± standard deviation of five replicates). The removal improves in the presence of NaCl (by 5%) and at higher temperature. Results on the effect of temperature favor spontaneity of adsorption and physisorption that follows from isotherm studies. The temperature effect is investigated exploiting the seasonal variation that does not seem to have been reported before and is the novelty of the present study. The advantages of the present investigation are the use of the adsorbent without pre-treatment, final pH falling well within the safe discharge limit and increased removal in the presence of NaCl. This study could be extended for gainful utilization of the industrial solid waste for similar application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Clean Technologies and Environmental Policy Springer Journals

Crystal violet adsorption on industrial waste (hog fuel ash): equilibrium kinetics with process optimization by response surface modeling

Loading next page...
 
/lp/springer_journal/crystal-violet-adsorption-on-industrial-waste-hog-fuel-ash-equilibrium-0qiIKR06gm
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Sustainable Development; Industrial Chemistry/Chemical Engineering; Industrial and Production Engineering; Environmental Engineering/Biotechnology; Environmental Economics
ISSN
1618-954X
eISSN
1618-9558
D.O.I.
10.1007/s10098-017-1471-5
Publisher site
See Article on Publisher Site

Abstract

The adsorptive removal of crystal violet from aqueous solution utilizing hog fuel ash, an industrial solid waste, available abundantly is reported in this article. The adsorbent is characterized by various physicochemical methods. Batch experiments are performed as functions of different process variables. The maximum removal (99.99%) was observed at equilibrium time (90 min). Results follow Freundlich isotherm (among five isotherms) and pseudo-second-order kinetics (among four kinetic models). The observed adsorption capacity of 17.002 mg/g is higher than many other reported waste materials. A three-factor full factorial central composite design scheme is adopted for optimizing different process variables and their interactions. The maximum removal predicted by response surface modeling is 99.99%, while corresponding experimental value is 99.13 ± 0.8895% (mean ± standard deviation of five replicates). The removal improves in the presence of NaCl (by 5%) and at higher temperature. Results on the effect of temperature favor spontaneity of adsorption and physisorption that follows from isotherm studies. The temperature effect is investigated exploiting the seasonal variation that does not seem to have been reported before and is the novelty of the present study. The advantages of the present investigation are the use of the adsorbent without pre-treatment, final pH falling well within the safe discharge limit and increased removal in the presence of NaCl. This study could be extended for gainful utilization of the industrial solid waste for similar application.

Journal

Clean Technologies and Environmental PolicySpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off