Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with NAD and sulfate suggest involvement of Phe37 in NAD binding for catalysis

Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with... Cytosolic Oryza sativa glyceraldehyde-3-phosphate dehydrogenase (OsGAPDH), the enzyme involved in the ubiquitous glycolysis, catalyzes the oxidative phosphorylation of glyceraldehyde-3-phosphate to 1,3-biphosphoglycerate (BPG) using nicotinamide adenine dinucleotide (NAD) as an electron acceptor. We report crystal structures of OsGAPDH in three conditions of NAD-free, NAD-bound and sulfate-soaked forms to discuss the molecular determinants for coenzyme specificity. The structure of OsGAPDH showed a homotetramer form with each monomer comprising three domains—NAD-binding, catalytic and S-loop domains. NAD binds to each OsGAPDH subunits with some residues forming positively charged grooves that attract sulfate anions, as a simulation of phosphate groups in the product BPG. Phe37 not only forms a bottleneck to improve NAD-binding but also combines with Pro193 and Asp35 as key conserved residues for NAD-specificity in OsGAPDH. The binding of NAD alters the side-chain conformation of Phe37 with a 90° rotation related to the adenine moiety of NAD, concomitant with clamping the active site about 0.6 Å from the “open” to “closed” form, producing an increased affinity specific for NAD. Phe37 exists only in higher organisms, whereas it is replaced by other residues (Thr or Leu) with smaller side chains in lower organisms, which makes a greater distance between Leu34 and NAD of E. coli GAPDH than that between Phe37 and NAD of OsGAPDH. We demonstrated that Phe37 plays a crucial role in stabilizing NAD binding or intermediating of apo-holo transition, resulting in a greater NAD-dependent catalytic efficiency using site-directed mutagenesis. Phe37 might be introduced by evolution generating a catalytic advantage in cytosolic GAPDH. Plant Molecular Biology Springer Journals

Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with NAD and sulfate suggest involvement of Phe37 in NAD binding for catalysis

Loading next page...
Springer Netherlands
Copyright © 2012 by Springer Science+Business Media B.V.
Life Sciences; Biochemistry, general; Plant Pathology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial