Cryptanalysis of a multi-party quantum key agreement protocol with single particles

Cryptanalysis of a multi-party quantum key agreement protocol with single particles Recently, Sun et al. (Quantum Inf Process 12:3411–3420, 2013) presented an efficient multi-party quantum key agreement (QKA) protocol by employing single particles and unitary operations. The aim of this protocol is to fairly and securely negotiate a secret session key among $$N$$ N parties with a high qubit efficiency. In addition, the authors claimed that no participant can learn anything more than his/her prescribed output in this protocol, i.e., the sub-secret keys of the participants can be kept secret during the protocol. However, here we point out that the sub-secret of a participant in Sun et al.’s protocol can be eavesdropped by the two participants next to him/her. Moreover, a certain number of dishonest participants can fully determine the final shared key in this protocol. Finally, we discuss the factors that should be considered when designing a really fair and secure QKA protocol. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Cryptanalysis of a multi-party quantum key agreement protocol with single particles

Loading next page...
 
/lp/springer_journal/cryptanalysis-of-a-multi-party-quantum-key-agreement-protocol-with-IHNdPQjZkG
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-014-0758-2
Publisher site
See Article on Publisher Site

Abstract

Recently, Sun et al. (Quantum Inf Process 12:3411–3420, 2013) presented an efficient multi-party quantum key agreement (QKA) protocol by employing single particles and unitary operations. The aim of this protocol is to fairly and securely negotiate a secret session key among $$N$$ N parties with a high qubit efficiency. In addition, the authors claimed that no participant can learn anything more than his/her prescribed output in this protocol, i.e., the sub-secret keys of the participants can be kept secret during the protocol. However, here we point out that the sub-secret of a participant in Sun et al.’s protocol can be eavesdropped by the two participants next to him/her. Moreover, a certain number of dishonest participants can fully determine the final shared key in this protocol. Finally, we discuss the factors that should be considered when designing a really fair and secure QKA protocol.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 27, 2014

References

  • Multiparty quantum key agreement with single particles
    Liu, B; Gao, F; Huang, W; Wen, QY
  • Quantum key agreement with EPR pairs and single-particle measurements
    Huang, W; Wen, QY; Liu, B; Gao, F; Sun, Y

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off