Cross-virtual concatenation for Ethernet-over-SONET/SDH networks

Cross-virtual concatenation for Ethernet-over-SONET/SDH networks Ethernet-over-SONET/SDH (EoS) is a popular approach for interconnecting geographically distant Ethernet segments using a SONET/SDH transport infrastructure. It typically uses virtual concatenation (VC) for dynamic bandwidth management. The aggregate SONET/SDH bandwidth for a given EoS connection is obtained by “concatenating” a number of equal-capacity virtual channels. Together, these virtual channels form a virtually concatenated group (VCG). In this article, we introduce a new concatenation technique, referred to as cross-virtual concatenation (CVC), which involves the concatenation of virtual channels of heterogeneous capacities. We show that CVC can be implemented through a simple upgrade at the end node, thus utilizing the existing legacy SDH infrastructure. By employing CVC for EoS systems, we show that the SDH bandwidth can be harvested more efficiently than in conventional VC. We consider two problems associated with routing CVC connections: the connection establishment problem and the connection upgrade problem. The goal of the first problem is to compute a set of paths between two EoS end systems such that a total bandwidth demand and a constraint on the differential delay between the paths are satisfied. Among all feasible sets, the one that consumes the least amount of network bandwidth is selected. For this problem, we develop an integer linear program (ILP) and an efficient algorithm based on the sliding-window approach. For the connection upgrade problem, the goal is to augment an existing set of paths so as to increase the aggregate bandwidth, while continue to meet the differential-delay constraint. We model this problem as a flow-maximization problem with a constraint on the delay of the virtual channels with positive flow. We then consider the problem of path selection under imprecise network state information. Simulations are conducted to demonstrate the advantages of employing CVC and to evaluate the performance of the proposed algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Cross-virtual concatenation for Ethernet-over-SONET/SDH networks

Loading next page...
 
/lp/springer_journal/cross-virtual-concatenation-for-ethernet-over-sonet-sdh-networks-pMXOgJTwXc
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0128-z
Publisher site
See Article on Publisher Site

Abstract

Ethernet-over-SONET/SDH (EoS) is a popular approach for interconnecting geographically distant Ethernet segments using a SONET/SDH transport infrastructure. It typically uses virtual concatenation (VC) for dynamic bandwidth management. The aggregate SONET/SDH bandwidth for a given EoS connection is obtained by “concatenating” a number of equal-capacity virtual channels. Together, these virtual channels form a virtually concatenated group (VCG). In this article, we introduce a new concatenation technique, referred to as cross-virtual concatenation (CVC), which involves the concatenation of virtual channels of heterogeneous capacities. We show that CVC can be implemented through a simple upgrade at the end node, thus utilizing the existing legacy SDH infrastructure. By employing CVC for EoS systems, we show that the SDH bandwidth can be harvested more efficiently than in conventional VC. We consider two problems associated with routing CVC connections: the connection establishment problem and the connection upgrade problem. The goal of the first problem is to compute a set of paths between two EoS end systems such that a total bandwidth demand and a constraint on the differential delay between the paths are satisfied. Among all feasible sets, the one that consumes the least amount of network bandwidth is selected. For this problem, we develop an integer linear program (ILP) and an efficient algorithm based on the sliding-window approach. For the connection upgrade problem, the goal is to augment an existing set of paths so as to increase the aggregate bandwidth, while continue to meet the differential-delay constraint. We model this problem as a flow-maximization problem with a constraint on the delay of the virtual channels with positive flow. We then consider the problem of path selection under imprecise network state information. Simulations are conducted to demonstrate the advantages of employing CVC and to evaluate the performance of the proposed algorithms.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Apr 15, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off