Cross-stratum resource reservation (CSRR) algorithm for deadline-driven applications in datacenter networks

Cross-stratum resource reservation (CSRR) algorithm for deadline-driven applications in... Nowadays, datacenters interconnected with optical networks have become the fundamental infrastructure to accommodate high-performance datacenter applications. Lacking of layer interaction between datacenters and networks during service provisioning, many end user applications cannot efficiently utilize the network capabilities, nor can they achieve the desired quality of service objectives. In response to these challenges, cross-stratum optimization has been studied to optimize the computing and network resources utilization from a united view. Meanwhile, the type of network applications becomes diverse. Compared to traditional immediate reservation (IR) request, a new type of request called advance reservation (AR) has recently been gaining attention for optical networks. IR’s start time of data transmission is assumed to be immediate, while AR request typically specifies the earliest time or the deadline of data transmission. According to the time features of AR request, AR applications should be scheduled in time dimension. Thus, it is both important and challenging to reserve computing and network resources in efficient manners. In this study, a cross-stratum resource model considering time dimension is set up, and a cross-stratum resource reservation (CSRR) algorithm is proposed to schedule AR applications and to reserve cross-stratum resource. Simulation results show that CSRR can reduce the failure rates of AR applications and improve the resource consumption ratio significantly. Photonic Network Communications Springer Journals

Cross-stratum resource reservation (CSRR) algorithm for deadline-driven applications in datacenter networks

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial