Cross-layer classification framework for automatic social behavioural analysis in surveillance scenario

Cross-layer classification framework for automatic social behavioural analysis in surveillance... The increasing demand for human activity analysis in surveillance scenarios has been triggered by the emergence of new features and concepts to help in identifying activities of interest. However, the characterisation of individual and group behaviours is a topic not so well studied in the video surveillance community due to not only its intrinsic difficulty and large variety of topics involved, but also because of the lack of valid semantic concepts that relate human activity to social context. In this paper, we address the topic of social semantic meaning in a well-defined surveillance scenario, namely shopping mall, and propose new definitions of individual and group behaviour that consider environment context, a relational descriptor that emphasises position and attention-based characteristics, and a new classification approach based on mini-batches. We also present a wide evaluation process that analyses the sociological meaning of the individual features and outlines the performance impact of automatic features extraction processes into our classification framework. We verify the discriminative value of the selected features, state the descriptor performance and robustness over different stress conditions, confirm the advantage of the proposed mini-batch classification approach which obtains promising results, and outline future research lines to improve our novel social behavioural analysis framework. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Computing and Applications Springer Journals

Cross-layer classification framework for automatic social behavioural analysis in surveillance scenario

Loading next page...
 
/lp/springer_journal/cross-layer-classification-framework-for-automatic-social-behavioural-C23JXgJT4V
Publisher
Springer London
Copyright
Copyright © 2016 by The Natural Computing Applications Forum
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Data Mining and Knowledge Discovery; Probability and Statistics in Computer Science; Computational Science and Engineering; Image Processing and Computer Vision; Computational Biology/Bioinformatics
ISSN
0941-0643
eISSN
1433-3058
D.O.I.
10.1007/s00521-016-2282-z
Publisher site
See Article on Publisher Site

Abstract

The increasing demand for human activity analysis in surveillance scenarios has been triggered by the emergence of new features and concepts to help in identifying activities of interest. However, the characterisation of individual and group behaviours is a topic not so well studied in the video surveillance community due to not only its intrinsic difficulty and large variety of topics involved, but also because of the lack of valid semantic concepts that relate human activity to social context. In this paper, we address the topic of social semantic meaning in a well-defined surveillance scenario, namely shopping mall, and propose new definitions of individual and group behaviour that consider environment context, a relational descriptor that emphasises position and attention-based characteristics, and a new classification approach based on mini-batches. We also present a wide evaluation process that analyses the sociological meaning of the individual features and outlines the performance impact of automatic features extraction processes into our classification framework. We verify the discriminative value of the selected features, state the descriptor performance and robustness over different stress conditions, confirm the advantage of the proposed mini-batch classification approach which obtains promising results, and outline future research lines to improve our novel social behavioural analysis framework.

Journal

Neural Computing and ApplicationsSpringer Journals

Published: Apr 9, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off