Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status

Crop water stress index derived from multi-year ground and aerial thermal images as an indicator... Potato yield and quality are highly dependent on an adequate supply of water. In this study, 3 years of information from thermal and RGB images were collected to evaluate water status in potato fields. Irrigation experiments were conducted in commercial potato fields (Desiree; drippers). Two water-deficit scenarios were tested: a short-term water deficit (by suppressing irrigation for a number of days before image acquisition), and a long-term cumulative water deficit. Ground and aerial images were acquired in various phenological stages along the potato growing season. Effects of irrigation treatments were recorded by thermal indices and biophysical measurements of stomatal conductance (SC), leaf water potential, leaf osmotic potential and gravimetric water potential in soil. Canopy temperature was delineated from the thermal images with and without fused information from the RGB image. Crop water stress index (CWSI) was calculated, using three forms of minimum baseline temperature: empirical, theoretical and statistical. An empirical evaluation of maximum baseline temperature of Tair + 7 °C was used in all CWSI forms examined. Statistical tests and comparison of CWSI with biophysical measurements were performed to evaluate the responses to irrigation treatments. The results indicated a high correlation of CWSI with SC from tuber initiation to maturity based on ground and aerial data (0.64 ≤ R2 ≤ 0.99). Similar trends of increasing CWSI from well to deficit-irrigated treatments were found in all three growing seasons. The results also showed that CWSI may be calculated based merely on thermal imagery data. Precision Agriculture Springer Journals

Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status

Loading next page...
Springer US
Copyright © 2014 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial