Critical solutions of nonlinear equations: stability issues

Critical solutions of nonlinear equations: stability issues It is known that when the set of Lagrange multipliers associated with a stationary point of a constrained optimization problem is not a singleton, this set may contain so-called critical multipliers. This special subset of Lagrange multipliers defines, to a great extent, stability pattern of the solution in question subject to parametric perturbations. Criticality of a Lagrange multiplier can be equivalently characterized by the absence of the local Lipschitzian error bound in terms of the natural residual of the optimality system. In this work, taking the view of criticality as that associated to the error bound, we extend the concept to general nonlinear equations (not necessarily with primal–dual optimality structure). Among other things, we show that while singular noncritical solutions of nonlinear equations can be expected to be stable only subject to some poor “asymptotically thin” classes of perturbations, critical solutions can be stable under rich classes of perturbations. This fact is quite remarkable, considering that in the case of nonisolated solutions, critical solutions usually form a thin subset within all the solutions. We also note that the results for general equations lead to some new insights into the properties of critical Lagrange multipliers (i.e., solutions of equations with primal–dual structure). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Programming Springer Journals

Critical solutions of nonlinear equations: stability issues

Loading next page...
 
/lp/springer_journal/critical-solutions-of-nonlinear-equations-stability-issues-wyaKkQI7Rx
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Mathematics of Computing; Numerical Analysis; Combinatorics; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics
ISSN
0025-5610
eISSN
1436-4646
D.O.I.
10.1007/s10107-016-1047-x
Publisher site
See Article on Publisher Site

Abstract

It is known that when the set of Lagrange multipliers associated with a stationary point of a constrained optimization problem is not a singleton, this set may contain so-called critical multipliers. This special subset of Lagrange multipliers defines, to a great extent, stability pattern of the solution in question subject to parametric perturbations. Criticality of a Lagrange multiplier can be equivalently characterized by the absence of the local Lipschitzian error bound in terms of the natural residual of the optimality system. In this work, taking the view of criticality as that associated to the error bound, we extend the concept to general nonlinear equations (not necessarily with primal–dual optimality structure). Among other things, we show that while singular noncritical solutions of nonlinear equations can be expected to be stable only subject to some poor “asymptotically thin” classes of perturbations, critical solutions can be stable under rich classes of perturbations. This fact is quite remarkable, considering that in the case of nonisolated solutions, critical solutions usually form a thin subset within all the solutions. We also note that the results for general equations lead to some new insights into the properties of critical Lagrange multipliers (i.e., solutions of equations with primal–dual structure).

Journal

Mathematical ProgrammingSpringer Journals

Published: Jul 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off