Critical Points and Bifurcations of the Three-Dimensional Onsager Model for Liquid Crystals

Critical Points and Bifurcations of the Three-Dimensional Onsager Model for Liquid Crystals We study the bifurcation diagram of the Onsager free-energy functional for liquid crystals with orientation parameter on the sphere. In particular, we concentrate on the bifurcations from the isotropic solution for a general class of two-body interaction potentials including the Onsager kernel. Reformulating the problem as a non-linear eigenvalue problem for the kernel operator, we prove that spherical harmonics are the corresponding eigenfunctions and we present a direct relationship between the coefficients of the Taylor expansion of this class of interaction potentials and their eigenvalues. We find explicit expressions for all bifurcation points corresponding to bifurcations from the isotropic state of the Onsager free-energy functional equipped with the Onsager interaction potential. A substantial amount of our analysis is based on the use of spherical harmonics and a special algorithm for computing expansions of products of spherical harmonics in terms of spherical harmonics is presented. Using a Lyapunov–Schmidt reduction, we derive a bifurcation equation depending on five state variables. The dimension of this state space is further reduced to two dimensions by using the rotational symmetry of the problem and the invariant theory of groups. On the basis of these results, we show that the first bifurcation from the isotropic state of the Onsager interaction potential is a transcritical bifurcation and that the corresponding solution is uniaxial. In addition, we prove some global properties of the bifurcation diagram such as the fact that the trivial solution is the unique local minimiser if the bifurcation parameter is high, that it is not a local minimiser if the bifurcation parameter is small, the boundedness of all equilibria of the functional and that the bifurcation branches are either unbounded or that they meet another bifurcation branch. Archive for Rational Mechanics and Analysis Springer Journals

Critical Points and Bifurcations of the Three-Dimensional Onsager Model for Liquid Crystals

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by The Author(s)
Physics; Classical Mechanics; Physics, general; Theoretical, Mathematical and Computational Physics; Complex Systems; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial