Critical Points and Bifurcations of the Three-Dimensional Onsager Model for Liquid Crystals

Critical Points and Bifurcations of the Three-Dimensional Onsager Model for Liquid Crystals We study the bifurcation diagram of the Onsager free-energy functional for liquid crystals with orientation parameter on the sphere. In particular, we concentrate on the bifurcations from the isotropic solution for a general class of two-body interaction potentials including the Onsager kernel. Reformulating the problem as a non-linear eigenvalue problem for the kernel operator, we prove that spherical harmonics are the corresponding eigenfunctions and we present a direct relationship between the coefficients of the Taylor expansion of this class of interaction potentials and their eigenvalues. We find explicit expressions for all bifurcation points corresponding to bifurcations from the isotropic state of the Onsager free-energy functional equipped with the Onsager interaction potential. A substantial amount of our analysis is based on the use of spherical harmonics and a special algorithm for computing expansions of products of spherical harmonics in terms of spherical harmonics is presented. Using a Lyapunov–Schmidt reduction, we derive a bifurcation equation depending on five state variables. The dimension of this state space is further reduced to two dimensions by using the rotational symmetry of the problem and the invariant theory of groups. On the basis of these results, we show that the first bifurcation from the isotropic state of the Onsager interaction potential is a transcritical bifurcation and that the corresponding solution is uniaxial. In addition, we prove some global properties of the bifurcation diagram such as the fact that the trivial solution is the unique local minimiser if the bifurcation parameter is high, that it is not a local minimiser if the bifurcation parameter is small, the boundedness of all equilibria of the functional and that the bifurcation branches are either unbounded or that they meet another bifurcation branch. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archive for Rational Mechanics and Analysis Springer Journals

Critical Points and Bifurcations of the Three-Dimensional Onsager Model for Liquid Crystals

Loading next page...
 
/lp/springer_journal/critical-points-and-bifurcations-of-the-three-dimensional-onsager-iCMD914rD3
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Physics; Classical Mechanics; Physics, general; Theoretical, Mathematical and Computational Physics; Complex Systems; Fluid- and Aerodynamics
ISSN
0003-9527
eISSN
1432-0673
D.O.I.
10.1007/s00205-017-1146-8
Publisher site
See Article on Publisher Site

Abstract

We study the bifurcation diagram of the Onsager free-energy functional for liquid crystals with orientation parameter on the sphere. In particular, we concentrate on the bifurcations from the isotropic solution for a general class of two-body interaction potentials including the Onsager kernel. Reformulating the problem as a non-linear eigenvalue problem for the kernel operator, we prove that spherical harmonics are the corresponding eigenfunctions and we present a direct relationship between the coefficients of the Taylor expansion of this class of interaction potentials and their eigenvalues. We find explicit expressions for all bifurcation points corresponding to bifurcations from the isotropic state of the Onsager free-energy functional equipped with the Onsager interaction potential. A substantial amount of our analysis is based on the use of spherical harmonics and a special algorithm for computing expansions of products of spherical harmonics in terms of spherical harmonics is presented. Using a Lyapunov–Schmidt reduction, we derive a bifurcation equation depending on five state variables. The dimension of this state space is further reduced to two dimensions by using the rotational symmetry of the problem and the invariant theory of groups. On the basis of these results, we show that the first bifurcation from the isotropic state of the Onsager interaction potential is a transcritical bifurcation and that the corresponding solution is uniaxial. In addition, we prove some global properties of the bifurcation diagram such as the fact that the trivial solution is the unique local minimiser if the bifurcation parameter is high, that it is not a local minimiser if the bifurcation parameter is small, the boundedness of all equilibria of the functional and that the bifurcation branches are either unbounded or that they meet another bifurcation branch.

Journal

Archive for Rational Mechanics and AnalysisSpringer Journals

Published: Jul 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off