Critical evaluation of electrode design and matrix effects on monitoring organophosphate pesticides using composite carbon nanotube-modified electrodes

Critical evaluation of electrode design and matrix effects on monitoring organophosphate... Carbon nanotubes (CNT)/Nafion-modified glassy carbon (GC) electrodes were used to immobilize the enzyme acetylcholinesterase (AChE) by crosslinking with glutaraldehyde. The CNT-modified electrodes exhibited a sensitive and stable electrocatalytic behavior towards thiocholine (TCh). Compared to ordinary GC electrodes modified with Nafion, a substantial (500-mV) decrease in the overvoltage of the TCh oxidation reaction is observed, along with a tenfold enhancement in the amperometric response. The CNT/Nafion/AChE electrode has very good stability of at least a month compared to surfaces made without crosslinking in the absence and presence of Nafion. Under optimal loadings of CNT, Nafion, AChE, and glutaraldehyde, a solution of CNT/Nafion in N,N-dimethylformamide (DMF) containing 4 mg/mL CNT and 0.01% Nafion was used to construct the electrodes in order to maximize the sensitivity of the biosensor for inhibition studies. An optimal enzyme loading of 0.137 U and crosslinking in 0.01% glutaraldehyde for 1 h was also needed to achieve this goal. The prepared electrodes had very good reproducibility to 1.0 mM acetylthiocholine (ATCh) (relative standard deviation [RSD] <5% for eight electrodes). Using paraoxon as a model pesticide, the biosensor was able to detect as low as 1.0 nM after 30 min of incubation at 30 °C. Using a log scale, the biosensor had good linearity in the concentration range 50–800 nM, with a correlation coefficient of 0.99. The prepared biosensor was used to test real water samples spiked with paraoxon and showed good correlation with a calibration curve using phosphate buffer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Critical evaluation of electrode design and matrix effects on monitoring organophosphate pesticides using composite carbon nanotube-modified electrodes

Loading next page...
 
/lp/springer_journal/critical-evaluation-of-electrode-design-and-matrix-effects-on-edVH090scU
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0337-4
Publisher site
See Article on Publisher Site

Abstract

Carbon nanotubes (CNT)/Nafion-modified glassy carbon (GC) electrodes were used to immobilize the enzyme acetylcholinesterase (AChE) by crosslinking with glutaraldehyde. The CNT-modified electrodes exhibited a sensitive and stable electrocatalytic behavior towards thiocholine (TCh). Compared to ordinary GC electrodes modified with Nafion, a substantial (500-mV) decrease in the overvoltage of the TCh oxidation reaction is observed, along with a tenfold enhancement in the amperometric response. The CNT/Nafion/AChE electrode has very good stability of at least a month compared to surfaces made without crosslinking in the absence and presence of Nafion. Under optimal loadings of CNT, Nafion, AChE, and glutaraldehyde, a solution of CNT/Nafion in N,N-dimethylformamide (DMF) containing 4 mg/mL CNT and 0.01% Nafion was used to construct the electrodes in order to maximize the sensitivity of the biosensor for inhibition studies. An optimal enzyme loading of 0.137 U and crosslinking in 0.01% glutaraldehyde for 1 h was also needed to achieve this goal. The prepared electrodes had very good reproducibility to 1.0 mM acetylthiocholine (ATCh) (relative standard deviation [RSD] <5% for eight electrodes). Using paraoxon as a model pesticide, the biosensor was able to detect as low as 1.0 nM after 30 min of incubation at 30 °C. Using a log scale, the biosensor had good linearity in the concentration range 50–800 nM, with a correlation coefficient of 0.99. The prepared biosensor was used to test real water samples spiked with paraoxon and showed good correlation with a calibration curve using phosphate buffer.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 18, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off