Credit risk prediction using support vector machines

Credit risk prediction using support vector machines The main purpose of this paper is to examine the relative performance between least-squares support vector machines and logistic regression models for default classification and default probability estimation. The financial ratios from a data set of more than 78,000 financial statements from 2000 to 2006 are used as default indicators. The main focus of this paper is on the influence of small training samples and high variance of the financial input data and the classification performance measured by the area under the receiver operating characteristic. The resolution and the reliability of the predicted default probabilities are evaluated by decompositions of the Brier score. It is shown that support vector machines significantly outperform logistic regression models, particularly under the condition of small training samples and high variance of the input data. Review of Quantitative Finance and Accounting Springer Journals

Credit risk prediction using support vector machines

Loading next page...
Springer US
Copyright © 2010 by Springer Science+Business Media, LLC
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial