Credit risk prediction using support vector machines

Credit risk prediction using support vector machines The main purpose of this paper is to examine the relative performance between least-squares support vector machines and logistic regression models for default classification and default probability estimation. The financial ratios from a data set of more than 78,000 financial statements from 2000 to 2006 are used as default indicators. The main focus of this paper is on the influence of small training samples and high variance of the financial input data and the classification performance measured by the area under the receiver operating characteristic. The resolution and the reliability of the predicted default probabilities are evaluated by decompositions of the Brier score. It is shown that support vector machines significantly outperform logistic regression models, particularly under the condition of small training samples and high variance of the input data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Credit risk prediction using support vector machines

Loading next page...
 
/lp/springer_journal/credit-risk-prediction-using-support-vector-machines-VuuxeIZ0dz
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1007/s11156-010-0190-3
Publisher site
See Article on Publisher Site

Abstract

The main purpose of this paper is to examine the relative performance between least-squares support vector machines and logistic regression models for default classification and default probability estimation. The financial ratios from a data set of more than 78,000 financial statements from 2000 to 2006 are used as default indicators. The main focus of this paper is on the influence of small training samples and high variance of the financial input data and the classification performance measured by the area under the receiver operating characteristic. The resolution and the reliability of the predicted default probabilities are evaluated by decompositions of the Brier score. It is shown that support vector machines significantly outperform logistic regression models, particularly under the condition of small training samples and high variance of the input data.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Jul 24, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off