Creating probabilistic databases from duplicated data

Creating probabilistic databases from duplicated data A major source of uncertainty in databases is the presence of duplicate items, i.e., records that refer to the same real-world entity. However, accurate deduplication is a difficult task and imperfect data cleaning may result in loss of valuable information. A reasonable alternative approach is to keep duplicates when the correct cleaning strategy is not certain, and utilize an efficient probabilistic query-answering technique to return query results along with probabilities of each answer being correct. In this paper, we present a flexible modular framework for scalably creating a probabilistic database out of a dirty relation of duplicated data and overview the challenges raised in utilizing this framework for large relations of string data. We study the problem of associating probabilities with duplicates that are detected using state-of-the-art scalable approximate join methods. We argue that standard thresholding techniques are not sufficiently robust for this task, and propose new clustering algorithms suitable for inferring duplicates and their associated probabilities. We show that the inferred probabilities accurately reflect the error in duplicate records. The VLDB Journal Springer Journals

Creating probabilistic databases from duplicated data

Loading next page...
Copyright © 2009 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


  • Swoosh: a generic approach to entity resolution
    Benjelloun, O.; Garcia-Molina, H.; Menestrina, D.; Su, Q.; Whang, S.E.; Widom, J.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial