Creating diversity in ensembles using synthetic neighborhoods of training samples

Creating diversity in ensembles using synthetic neighborhoods of training samples Diversity among base classifiers is known to be a key driver for the construction of an effective ensemble classifier. Several methods have been proposed to construct diverse base classifiers using artificially generated training samples. However, in these methods, diversity is often obtained at the expense of the accuracy of base classifiers. Inspired by the localized generalization error model a new sample generation method is proposed in this study. When preparing different training sets for base classifiers, the proposed method generates samples located within limited neighborhoods of the corresponding training samples. The generated samples are different with the original training samples but they also expand different parts of the original training data. Learning these datasets can result in a set of base classifiers that are accurate in different regions of the input space as well as maintaining appropriate diversity. Experiments performed on 26 benchmark datasets showed that: (1) our proposed method significantly outperformed some state-of-the-art ensemble methods in term of the classification accuracy; (2) our proposed method was significantly more efficient that other sample generation based ensemble methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

Creating diversity in ensembles using synthetic neighborhoods of training samples

Loading next page...
 
/lp/springer_journal/creating-diversity-in-ensembles-using-synthetic-neighborhoods-of-lkd87OHg3a
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-017-0922-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial