Creating diversity in ensembles using synthetic neighborhoods of training samples

Creating diversity in ensembles using synthetic neighborhoods of training samples Diversity among base classifiers is known to be a key driver for the construction of an effective ensemble classifier. Several methods have been proposed to construct diverse base classifiers using artificially generated training samples. However, in these methods, diversity is often obtained at the expense of the accuracy of base classifiers. Inspired by the localized generalization error model a new sample generation method is proposed in this study. When preparing different training sets for base classifiers, the proposed method generates samples located within limited neighborhoods of the corresponding training samples. The generated samples are different with the original training samples but they also expand different parts of the original training data. Learning these datasets can result in a set of base classifiers that are accurate in different regions of the input space as well as maintaining appropriate diversity. Experiments performed on 26 benchmark datasets showed that: (1) our proposed method significantly outperformed some state-of-the-art ensemble methods in term of the classification accuracy; (2) our proposed method was significantly more efficient that other sample generation based ensemble methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

Creating diversity in ensembles using synthetic neighborhoods of training samples

Loading next page...
 
/lp/springer_journal/creating-diversity-in-ensembles-using-synthetic-neighborhoods-of-lkd87OHg3a
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-017-0922-3
Publisher site
See Article on Publisher Site

Abstract

Diversity among base classifiers is known to be a key driver for the construction of an effective ensemble classifier. Several methods have been proposed to construct diverse base classifiers using artificially generated training samples. However, in these methods, diversity is often obtained at the expense of the accuracy of base classifiers. Inspired by the localized generalization error model a new sample generation method is proposed in this study. When preparing different training sets for base classifiers, the proposed method generates samples located within limited neighborhoods of the corresponding training samples. The generated samples are different with the original training samples but they also expand different parts of the original training data. Learning these datasets can result in a set of base classifiers that are accurate in different regions of the input space as well as maintaining appropriate diversity. Experiments performed on 26 benchmark datasets showed that: (1) our proposed method significantly outperformed some state-of-the-art ensemble methods in term of the classification accuracy; (2) our proposed method was significantly more efficient that other sample generation based ensemble methods.

Journal

Applied IntelligenceSpringer Journals

Published: Apr 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off