Cre recombinase expression can result in phenotypic aberrations in plants

Cre recombinase expression can result in phenotypic aberrations in plants The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between the phenotype and cre expression, aberrant phenotypes always co-segregate with the transgene, which strongly suggests a correlation. The severity of the phenotype does not correlate with the level of steady-state mRNA in mature leaves, but with the timing of cre expression during organogenesis. The early onset of cre expression in tomato is correlated with a more severe phenotype and with higher germinal transmission frequencies of site-specific deletions. No aberrant phenotype was observed when a tissue-specific phaseolin promoter was used to drive the cre gene. The data suggest that for the application of recombinases in plants, expression is best limited to specific tissues and a short time frame.[12pt] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cre recombinase expression can result in phenotypic aberrations in plants

Loading next page...
 
/lp/springer_journal/cre-recombinase-expression-can-result-in-phenotypic-aberrations-in-2TrPva3vzA
Publisher
Springer Journals
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1021174726070
Publisher site
See Article on Publisher Site

Abstract

The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between the phenotype and cre expression, aberrant phenotypes always co-segregate with the transgene, which strongly suggests a correlation. The severity of the phenotype does not correlate with the level of steady-state mRNA in mature leaves, but with the timing of cre expression during organogenesis. The early onset of cre expression in tomato is correlated with a more severe phenotype and with higher germinal transmission frequencies of site-specific deletions. No aberrant phenotype was observed when a tissue-specific phaseolin promoter was used to drive the cre gene. The data suggest that for the application of recombinases in plants, expression is best limited to specific tissues and a short time frame.[12pt]

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off