This paper analyzes crack nucleation from a wedge disclination dipole in the presence of a remote stress, accounting for the shift of the rotation axes within the dipole arm of the disclinations. A Zener–Griffith crack is assumed and an energy method is employed for the analysis. A single energy equation determines the equilibrium crack lengths and the crack head opening. Uniaxial and biaxial dipoles are compared: in the former the disclinations share a common rotation axis while in the latter the axes are separate. The results show that stable and unstable cracks can nucleate from the positive disclination of the dipole, but some of them are energetically unfavorable. A uniaxial dipole is stable against crack nucleation when the axis is located away from the positive disclination. Biaxial dipoles are more stable when the rotation axis of each disclination approaches the defect line of the other disclination. If the negative disclinations of a uniaxial dipole and a biaxial dipole have the same axis shift, the critical nucleation stress of the biaxial dipole is larger if its positive disclination shift is more than that of the uniaxial dipole. Stable crack lengths generally increase, while the crack head openings decrease, with the axis shift of the positive disclination. The crack head opening to crack length ratio is of the order of 0.001–0.01, and can be higher if an applied stress is present.
International Journal of Fracture – Springer Journals
Published: May 31, 2018
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.