Coxsackievirus B3 infection induces autophagic flux, and autophagosomes are critical for efficient viral replication

Coxsackievirus B3 infection induces autophagic flux, and autophagosomes are critical for... Autophagy is an intrinsic cellular process that can degrade cytoplasmic components. It has been reported that several pathogens hijack this process to facilitate their replication. Coxsackievirus B3 (CVB3), a member of the family Picornaviridae, induces autophagy upon infection. However, the details of CVB3-induced autophagy remain a subject of debate. This study applied a combination of multiple assays for the measurement of autophagy and demonstrated that CVB3 induces a complete autophagic flux. Experiments with infected HEK293A cells revealed that autophagosomes were induced upon CVB3 infection. Most of these autophagosomes were mCherry positive in mCherry-GFP-LC3 cells. Conversely, mCherry-positive autophagosomes were rescued to green positive when treated with the acidification inhibitors chloroquine (CQ) and bafilomycin A1 (BAF), suggesting that autophagosomes fused with late endosomes or lysosomes. The co-localization of LC3-positive puncta with lysosome-associated membrane protein 1 (LAMP1) or LysoTracker confirmed that the autophagosomes fused primarily with lysosomes. Interestingly, the disruption of autophagosome formation by 3-methyladenine (3-MA) or ATG5 siRNA treatment during viral infection significantly decreased CVB3 replication. However, inhibitors of lysosomal acidification, fusion, or degradation did not affect viral replication. Therefore, autolysosomes may not be critical for viral replication in vitro. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Coxsackievirus B3 infection induces autophagic flux, and autophagosomes are critical for efficient viral replication

Loading next page...
 
/lp/springer_journal/coxsackievirus-b3-infection-induces-autophagic-flux-and-autophagosomes-1zEVhNC2AQ
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-016-2896-6
Publisher site
See Article on Publisher Site

Abstract

Autophagy is an intrinsic cellular process that can degrade cytoplasmic components. It has been reported that several pathogens hijack this process to facilitate their replication. Coxsackievirus B3 (CVB3), a member of the family Picornaviridae, induces autophagy upon infection. However, the details of CVB3-induced autophagy remain a subject of debate. This study applied a combination of multiple assays for the measurement of autophagy and demonstrated that CVB3 induces a complete autophagic flux. Experiments with infected HEK293A cells revealed that autophagosomes were induced upon CVB3 infection. Most of these autophagosomes were mCherry positive in mCherry-GFP-LC3 cells. Conversely, mCherry-positive autophagosomes were rescued to green positive when treated with the acidification inhibitors chloroquine (CQ) and bafilomycin A1 (BAF), suggesting that autophagosomes fused with late endosomes or lysosomes. The co-localization of LC3-positive puncta with lysosome-associated membrane protein 1 (LAMP1) or LysoTracker confirmed that the autophagosomes fused primarily with lysosomes. Interestingly, the disruption of autophagosome formation by 3-methyladenine (3-MA) or ATG5 siRNA treatment during viral infection significantly decreased CVB3 replication. However, inhibitors of lysosomal acidification, fusion, or degradation did not affect viral replication. Therefore, autolysosomes may not be critical for viral replication in vitro.

Journal

Archives of VirologySpringer Journals

Published: May 25, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off