Covert photo classification by deep convolutional neural networks

Covert photo classification by deep convolutional neural networks The increasing presence of image/video capture devices such as camera phones and surveillance cameras has become a ubiquitous element of providing convenience and improving security in modern life. On the other hand, the pervasiveness of such image/video capture devices raises growing privacy concerns. In this paper, we concentrate on a new visual privacy protection problem—covert photo classification. Covert photography means that the subject being photographed is purposely made unaware that he or she is photographed. A covert photo often contains information that is inherently sensitive and private to a person. If such photos are released on the public without approval, it may lead to serious negative consequences. We explore deep convolutional neural networks (DCNNs) to discover intricate structures of covert photos and automatically learn the representations for covert photo classification. Experimental results demonstrate that DCNN-based architectures which are fully end-to-end trained reach beyond previous experience-dependent hand-engineered feature methods in covert photo classification. The fusion of three DCNN-based architectures (AlexNet, VGGS, and GoogleNet) shows enhanced performance over individual networks on the Covert-2500 dataset and achieves an average classification rate (1-EER) of 0.925 which significantly outperforms the result (1-EER) of 0.8940 of hand-engineered feature methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Machine Vision and Applications Springer Journals

Covert photo classification by deep convolutional neural networks

Loading next page...
 
/lp/springer_journal/covert-photo-classification-by-deep-convolutional-neural-networks-FHwix1BEn8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Computer Science; Pattern Recognition; Image Processing and Computer Vision; Communications Engineering, Networks
ISSN
0932-8092
eISSN
1432-1769
D.O.I.
10.1007/s00138-017-0859-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial