Covering a set with homothets of a convex body

Covering a set with homothets of a convex body We consider two problems mentioned in the book “Research Problems in Discrete Geometry” (Brass et al. in research problems in discrete geometry, vol xii+499. Springer, New York, pp ISBN: 978-0387-23815-8; 0-387-23815-8, 2005). First, let K and L be given convex bodies in $${\mathbb{R}^{d}}$$ . We prove that if the total volume of a family of positive homothets of K is sufficiently large then they permit a translative covering of L. This problem, in the case when K = L and the dimension is two, was originally posed by L. Fejes Tóth. The previously known bound (Januszewski in proc. of the International scientific conference on mathematics, pp 29–34. Žilina, 1998) on the total volume (in the case when K = L) was of order d d vol(K), we prove a bound that is exponential in the dimension. The second problem is the following: Find a condition, in terms of the coefficients of homothety, that is necessary for a family of positive homothets of K to cover K. The problem was phrased by V. Soltan, who conjectured that the sum of the coefficients is at least d. We confirm an asymptotic version of this conjecture. Positivity Springer Journals

Covering a set with homothets of a convex body

Loading next page...
SP Birkhäuser Verlag Basel
Copyright © 2009 by Birkhäuser Verlag Basel/Switzerland
Mathematics; Econometrics; Calculus of Variations and Optimal Control; Optimization; Potential Theory; Operator Theory; Fourier Analysis
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial