Covering a set with homothets of a convex body

Covering a set with homothets of a convex body We consider two problems mentioned in the book “Research Problems in Discrete Geometry” (Brass et al. in research problems in discrete geometry, vol xii+499. Springer, New York, pp ISBN: 978-0387-23815-8; 0-387-23815-8, 2005). First, let K and L be given convex bodies in $${\mathbb{R}^{d}}$$ . We prove that if the total volume of a family of positive homothets of K is sufficiently large then they permit a translative covering of L. This problem, in the case when K = L and the dimension is two, was originally posed by L. Fejes Tóth. The previously known bound (Januszewski in proc. of the International scientific conference on mathematics, pp 29–34. Žilina, 1998) on the total volume (in the case when K = L) was of order d d vol(K), we prove a bound that is exponential in the dimension. The second problem is the following: Find a condition, in terms of the coefficients of homothety, that is necessary for a family of positive homothets of K to cover K. The problem was phrased by V. Soltan, who conjectured that the sum of the coefficients is at least d. We confirm an asymptotic version of this conjecture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Covering a set with homothets of a convex body

Loading next page...
 
/lp/springer_journal/covering-a-set-with-homothets-of-a-convex-body-EXA0U7G4me
Publisher
SP Birkhäuser Verlag Basel
Copyright
Copyright © 2009 by Birkhäuser Verlag Basel/Switzerland
Subject
Mathematics; Econometrics; Calculus of Variations and Optimal Control; Optimization; Potential Theory; Operator Theory; Fourier Analysis
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-009-0005-8
Publisher site
See Article on Publisher Site

Abstract

We consider two problems mentioned in the book “Research Problems in Discrete Geometry” (Brass et al. in research problems in discrete geometry, vol xii+499. Springer, New York, pp ISBN: 978-0387-23815-8; 0-387-23815-8, 2005). First, let K and L be given convex bodies in $${\mathbb{R}^{d}}$$ . We prove that if the total volume of a family of positive homothets of K is sufficiently large then they permit a translative covering of L. This problem, in the case when K = L and the dimension is two, was originally posed by L. Fejes Tóth. The previously known bound (Januszewski in proc. of the International scientific conference on mathematics, pp 29–34. Žilina, 1998) on the total volume (in the case when K = L) was of order d d vol(K), we prove a bound that is exponential in the dimension. The second problem is the following: Find a condition, in terms of the coefficients of homothety, that is necessary for a family of positive homothets of K to cover K. The problem was phrased by V. Soltan, who conjectured that the sum of the coefficients is at least d. We confirm an asymptotic version of this conjecture.

Journal

PositivitySpringer Journals

Published: Mar 7, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off