Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta

Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and... River flooding has been causing extensive losses to life and property, which is a serious concern worldwide. To minimize these losses, suitable planning and management practices are required for the floodplain mapping. Flash floods occur almost every year in the deltaic region of Brahmani and Baitarani river basins in India, during the monsoon season. Generally, 1D modelling is considered as a regular practice. But nowadays, model formulations include 1D for the representation of river channels and 2D for representing river floodplains. In the absence of uniform observations, a hybrid model (1D–2D coupled model) has been developed for this deltaic region to identify the extent of inundation and its depth during the flooding, since 1D models alone do not provide detailed information of flooding. Thus, a well-known 2D river hydrodynamic model iRIC was externally coupled with 1D (SWAT and SWMM) models to simulate and visualize flood scenarios and to identify the flood-prone areas. The hydrological model SWAT was calibrated and validated for Brahmani river deltaic basin, with the observed discharge data available. However for Baitarani river basin, observed flow data were missing and only gauge data were available at few monitoring stations. Hence, for Baitarani river basin, the SWMM model was developed and calibrated with the help of Monte Carlo method. Finally, the SWAT- and SWMM-based tributary stream flow outputs were fed together into the iRIC hydrodynamic model as input for flood inundation mapping. The discharge and water gauge data were used for the calibration and validation. The results obtained from the coupled model were found to be in good agreement with the observed data (RMSE value is 0.77 and 0.79 during calibration and validation, respectively), which enabled identification of the flood-prone areas. The developed model may be used as a tool for effective planning and management of natural disasters such as flash floods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Natural Hazards Springer Journals

Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta

Loading next page...
 
/lp/springer_journal/coupling-of-1d-models-swat-and-swmm-with-2d-model-iric-for-mapping-6275dgxOht
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Earth Sciences; Natural Hazards; Hydrogeology; Geophysics/Geodesy; Geotechnical Engineering & Applied Earth Sciences; Civil Engineering; Environmental Management
ISSN
0921-030X
eISSN
1573-0840
D.O.I.
10.1007/s11069-018-3281-4
Publisher site
See Article on Publisher Site

Abstract

River flooding has been causing extensive losses to life and property, which is a serious concern worldwide. To minimize these losses, suitable planning and management practices are required for the floodplain mapping. Flash floods occur almost every year in the deltaic region of Brahmani and Baitarani river basins in India, during the monsoon season. Generally, 1D modelling is considered as a regular practice. But nowadays, model formulations include 1D for the representation of river channels and 2D for representing river floodplains. In the absence of uniform observations, a hybrid model (1D–2D coupled model) has been developed for this deltaic region to identify the extent of inundation and its depth during the flooding, since 1D models alone do not provide detailed information of flooding. Thus, a well-known 2D river hydrodynamic model iRIC was externally coupled with 1D (SWAT and SWMM) models to simulate and visualize flood scenarios and to identify the flood-prone areas. The hydrological model SWAT was calibrated and validated for Brahmani river deltaic basin, with the observed discharge data available. However for Baitarani river basin, observed flow data were missing and only gauge data were available at few monitoring stations. Hence, for Baitarani river basin, the SWMM model was developed and calibrated with the help of Monte Carlo method. Finally, the SWAT- and SWMM-based tributary stream flow outputs were fed together into the iRIC hydrodynamic model as input for flood inundation mapping. The discharge and water gauge data were used for the calibration and validation. The results obtained from the coupled model were found to be in good agreement with the observed data (RMSE value is 0.77 and 0.79 during calibration and validation, respectively), which enabled identification of the flood-prone areas. The developed model may be used as a tool for effective planning and management of natural disasters such as flash floods.

Journal

Natural HazardsSpringer Journals

Published: Apr 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off