County child poverty rates in the US: a spatial regression approach

County child poverty rates in the US: a spatial regression approach We apply methods of exploratory spatial data analysis (ESDA) and spatial regression analysis to examine intercounty variation in child poverty rates in the US. Such spatial analyses are important because regression models that exclude explicit specification of spatial effects, when they exist, can lead to inaccurate inferences about predictor variables. Using county-level data for 1990, we re-examine earlier published results [Friedman and Lichter (Popul Res Policy Rev 17:91–109, 1998)]. We find that formal tests for spatial autocorrelation among county child poverty rates confirm and quantify what is obvious from simple maps of such rates: the risk of a child living in poverty is not (spatially) a randomly distributed risk at the county level. Explicit acknowledgment of spatial effects in an explanatory regression model improves considerably the earlier published regression results, which did not take account of spatial autocorrelation. These improvements include: (1) the shifting of “wrong sign” parameters in the direction originally hypothesized by the authors, (2) a reduction of residual squared error, and (3) the elimination of any substantive residual spatial autocorrelation. While not without its own problems and some remaining ambiguities, this reanalysis is a convincing demonstration of the need for demographers and other social scientists to examine spatial autocorrelation in their data and to explicitly correct for spatial externalities, if indicated, when performing multiple regression analyses on variables that are spatially referenced. Substantively, the analysis improves the estimates of the joint effects of place-influences and family-influences on child poverty. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Population Research and Policy Review Springer Journals

County child poverty rates in the US: a spatial regression approach

Loading next page...
 
/lp/springer_journal/county-child-poverty-rates-in-the-us-a-spatial-regression-approach-yk7MPlMvOO
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Social Sciences; Demography; Sociology, general; Population Economics
ISSN
0167-5923
eISSN
1573-7829
D.O.I.
10.1007/s11113-006-9007-4
Publisher site
See Article on Publisher Site

Abstract

We apply methods of exploratory spatial data analysis (ESDA) and spatial regression analysis to examine intercounty variation in child poverty rates in the US. Such spatial analyses are important because regression models that exclude explicit specification of spatial effects, when they exist, can lead to inaccurate inferences about predictor variables. Using county-level data for 1990, we re-examine earlier published results [Friedman and Lichter (Popul Res Policy Rev 17:91–109, 1998)]. We find that formal tests for spatial autocorrelation among county child poverty rates confirm and quantify what is obvious from simple maps of such rates: the risk of a child living in poverty is not (spatially) a randomly distributed risk at the county level. Explicit acknowledgment of spatial effects in an explanatory regression model improves considerably the earlier published regression results, which did not take account of spatial autocorrelation. These improvements include: (1) the shifting of “wrong sign” parameters in the direction originally hypothesized by the authors, (2) a reduction of residual squared error, and (3) the elimination of any substantive residual spatial autocorrelation. While not without its own problems and some remaining ambiguities, this reanalysis is a convincing demonstration of the need for demographers and other social scientists to examine spatial autocorrelation in their data and to explicitly correct for spatial externalities, if indicated, when performing multiple regression analyses on variables that are spatially referenced. Substantively, the analysis improves the estimates of the joint effects of place-influences and family-influences on child poverty.

Journal

Population Research and Policy ReviewSpringer Journals

Published: Nov 16, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off