Coulomb explosion dynamics of N2O in intense laser-field: Identification of new two-body and three-body fragmentation pathways

Coulomb explosion dynamics of N2O in intense laser-field: Identification of new two-body and... The Coulomb explosion process of N2O in an intense laser-field (∼5 PW/cm2) has been investigated by the high-resolution time-of-flight (TOF) spectroscopy. Six two-body explosion pathways involving the NO+, NO2+, N2 + molecular ions have been securely identified from the momentum-scaled TOF spectra of the fragment ions. Assuming a linear geometry, three-body explosion pathways were investigated by sequential and concerted explosion models. When the concerted model is adopted, the observed momentum distributions of six atomic ion channels; N+, N2+, N3+, O+, O2+ and O3+, were well fitted using the Gaussian momentum distribution with the optimized bond elongation factor of 2.2(3). From the yields of individual Coulomb explosion pathways determined by the fit, the abundance of the parent ions, N2Oz+ (z=2–8), prior to the two- body and three-body explosion processes was found to have a smooth distribution with a maximum at z∼3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Coulomb explosion dynamics of N2O in intense laser-field: Identification of new two-body and three-body fragmentation pathways

Loading next page...
 
/lp/springer_journal/coulomb-explosion-dynamics-of-n2o-in-intense-laser-field-fs2lb81QGc
Publisher
Springer Journals
Copyright
Copyright © 1998 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856798X00401
Publisher site
See Article on Publisher Site

Abstract

The Coulomb explosion process of N2O in an intense laser-field (∼5 PW/cm2) has been investigated by the high-resolution time-of-flight (TOF) spectroscopy. Six two-body explosion pathways involving the NO+, NO2+, N2 + molecular ions have been securely identified from the momentum-scaled TOF spectra of the fragment ions. Assuming a linear geometry, three-body explosion pathways were investigated by sequential and concerted explosion models. When the concerted model is adopted, the observed momentum distributions of six atomic ion channels; N+, N2+, N3+, O+, O2+ and O3+, were well fitted using the Gaussian momentum distribution with the optimized bond elongation factor of 2.2(3). From the yields of individual Coulomb explosion pathways determined by the fit, the abundance of the parent ions, N2Oz+ (z=2–8), prior to the two- body and three-body explosion processes was found to have a smooth distribution with a maximum at z∼3.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off