Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA β

Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by... For bipartite begomoviruses (family Geminiviridae ) trans -replication of the DNA B component by the DNA A-encoded replication-associated protein (Rep) is achieved by virtue of a shared sequence, the “common region”, which contains repeated motifs (iterons) which are sequence-specific Rep binding sites and form part of the origin of replication. Recently cotton leaf curl disease (CLCuD), a major constraint to cotton production on the Indian subcontinent, has been shown to be caused by a monopartite begomovirus ( Cotton leaf curl Multan virus (CLCuMV)) and a novel single-stranded DNA satellite molecule termed CLCuD DNA β. The satellite molecule is trans -replicated by CLCuMV but does not possess the iteron sequences of this virus. We have investigated the ability of CLCuD DNA β to interact with three further clones of monopartite begomoviruses, isolated from cotton, that have distinct Rep binding specificities. All three cloned viruses were capable of trans -replicating the satellite molecule and inducing CLCuD symptoms in cotton, indicating that the interaction between begomovirus and DNA β is relaxed in comparison to the interaction between DNA A and DNA B components. Field surveys across all the cotton growing regions of Pakistan indicate that dual and multiple infections are the norm for CLCuD with no evidence of synergism. Despite the diversity of begomoviruses associated with CLCuD, only a single class of DNA β has been detected, suggesting that this satellite has the capacity to be recruited by unrelated begomoviruses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNA β

Loading next page...
 
/lp/springer_journal/cotton-leaf-curl-disease-is-associated-with-multiple-monopartite-qfvm1ewVLF
Publisher
Springer Journals
Copyright
Copyright © 2003 by Springer-Verlag/Wien
Subject
LifeSciences
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-003-0149-y
Publisher site
See Article on Publisher Site

Abstract

For bipartite begomoviruses (family Geminiviridae ) trans -replication of the DNA B component by the DNA A-encoded replication-associated protein (Rep) is achieved by virtue of a shared sequence, the “common region”, which contains repeated motifs (iterons) which are sequence-specific Rep binding sites and form part of the origin of replication. Recently cotton leaf curl disease (CLCuD), a major constraint to cotton production on the Indian subcontinent, has been shown to be caused by a monopartite begomovirus ( Cotton leaf curl Multan virus (CLCuMV)) and a novel single-stranded DNA satellite molecule termed CLCuD DNA β. The satellite molecule is trans -replicated by CLCuMV but does not possess the iteron sequences of this virus. We have investigated the ability of CLCuD DNA β to interact with three further clones of monopartite begomoviruses, isolated from cotton, that have distinct Rep binding specificities. All three cloned viruses were capable of trans -replicating the satellite molecule and inducing CLCuD symptoms in cotton, indicating that the interaction between begomovirus and DNA β is relaxed in comparison to the interaction between DNA A and DNA B components. Field surveys across all the cotton growing regions of Pakistan indicate that dual and multiple infections are the norm for CLCuD with no evidence of synergism. Despite the diversity of begomoviruses associated with CLCuD, only a single class of DNA β has been detected, suggesting that this satellite has the capacity to be recruited by unrelated begomoviruses.

Journal

Archives of VirologySpringer Journals

Published: Oct 1, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off