Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Cortical tissue-specific accumulation of the root-specific ns-LTP transcripts in the bean (Phaseolus vulgaris) seedlings

Cortical tissue-specific accumulation of the root-specific ns-LTP transcripts in the bean... The characterization of a cDNA clone encoding non-specific lipid transfer protein (PvLTP, formerly named PVR3) in the roots of bean seedlings has been previously reported. In this study, we examined the temporal and spatial accumulation of PvLTP mRNA and the effect of the auxin naphthaleneacetic acid (NAA) on the accumulation of PvLTP mRNA during root development. In situ hybridization showed that accumulation of PvLTP mRNA is highly tissue-specific. Accumulation was detected in the cortical tissue, but not in other tissues of root, including the quiescent center and root cap. Within the cortical tissue, accumulation of PvLTP mRNA was developmentally regulated; accumulation of PvLTP mRNA was high in the cortical tissue of the proximal and ground meristem and declined as cortical tissue developed further. Since the appropriate distribution of auxin is an important factor responsible for the maintenance of root meristem organization. We examined effect of auxin on the accumulation of PvLTP mRNA in relation to the development of cortical tissue. In bean seedlings grown on medium supplemented with 5 μM NAA, morphological alternations, including radial root expansion and abnormal tissue organization in the root apical meristem, were observed. Only faint accumulation signals of PvLTP mRNA were observed in the cortical tissue of proximal meristem region, indicating that cortical tissue development was repressed by exogenous NAA. However, our results suggest that the change in accumulation of PvLTP mRNA is not direct regulatory effect but reflective effect of altered development of cortical tissue that was induced by exogenous NAA. The temporal and spatial accumulation of PvLTP mRNA indicates that PvLTP is a useful marker for the development of cortical tissue in the root tip in bean seedlings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Cortical tissue-specific accumulation of the root-specific ns-LTP transcripts in the bean (Phaseolus vulgaris) seedlings

Loading next page...
 
/lp/springer_journal/cortical-tissue-specific-accumulation-of-the-root-specific-ns-ltp-Flb9pLhqKw

References (43)

Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1006008117795
Publisher site
See Article on Publisher Site

Abstract

The characterization of a cDNA clone encoding non-specific lipid transfer protein (PvLTP, formerly named PVR3) in the roots of bean seedlings has been previously reported. In this study, we examined the temporal and spatial accumulation of PvLTP mRNA and the effect of the auxin naphthaleneacetic acid (NAA) on the accumulation of PvLTP mRNA during root development. In situ hybridization showed that accumulation of PvLTP mRNA is highly tissue-specific. Accumulation was detected in the cortical tissue, but not in other tissues of root, including the quiescent center and root cap. Within the cortical tissue, accumulation of PvLTP mRNA was developmentally regulated; accumulation of PvLTP mRNA was high in the cortical tissue of the proximal and ground meristem and declined as cortical tissue developed further. Since the appropriate distribution of auxin is an important factor responsible for the maintenance of root meristem organization. We examined effect of auxin on the accumulation of PvLTP mRNA in relation to the development of cortical tissue. In bean seedlings grown on medium supplemented with 5 μM NAA, morphological alternations, including radial root expansion and abnormal tissue organization in the root apical meristem, were observed. Only faint accumulation signals of PvLTP mRNA were observed in the cortical tissue of proximal meristem region, indicating that cortical tissue development was repressed by exogenous NAA. However, our results suggest that the change in accumulation of PvLTP mRNA is not direct regulatory effect but reflective effect of altered development of cortical tissue that was induced by exogenous NAA. The temporal and spatial accumulation of PvLTP mRNA indicates that PvLTP is a useful marker for the development of cortical tissue in the root tip in bean seedlings.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

There are no references for this article.