Correlative analysis of organised structures in turbulent jets

Correlative analysis of organised structures in turbulent jets An approach to characterise jets by analysing the locations of large-scale instantaneous structures is presented. Planar imaging is used to identify instantaneous large-scale structures in flow fields. “Correlation Images” are generated from the auto-correlation of identified large-scale structures in instantaneous planar images. A “Structure Correlation Survey” is produced by the sum of Correlation Images from an ensemble. A Structure Correlation Survey provides a measure of the underlying large-scale structures, namely the characteristic distances and angles between large-scale structures, number densities of large-scale structures in the image field and their dominant modes of flow. The approach is assessed analytically and applied to experimental data. Four generic flow patterns are identified and used individually, or in combination, to classify jet flows. Results show that the proposed method can be used successfully to characterise jet flows based on large-scale structures in an instantaneous flow field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Correlative analysis of organised structures in turbulent jets

Loading next page...
 
/lp/springer_journal/correlative-analysis-of-organised-structures-in-turbulent-jets-CuWaX7iIAI
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1383-4
Publisher site
See Article on Publisher Site

Abstract

An approach to characterise jets by analysing the locations of large-scale instantaneous structures is presented. Planar imaging is used to identify instantaneous large-scale structures in flow fields. “Correlation Images” are generated from the auto-correlation of identified large-scale structures in instantaneous planar images. A “Structure Correlation Survey” is produced by the sum of Correlation Images from an ensemble. A Structure Correlation Survey provides a measure of the underlying large-scale structures, namely the characteristic distances and angles between large-scale structures, number densities of large-scale structures in the image field and their dominant modes of flow. The approach is assessed analytically and applied to experimental data. Four generic flow patterns are identified and used individually, or in combination, to classify jet flows. Results show that the proposed method can be used successfully to characterise jet flows based on large-scale structures in an instantaneous flow field.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 19, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off