Correlation of the separation region length in shock wave/channel boundary layer interaction

Correlation of the separation region length in shock wave/channel boundary layer interaction  Results of an experimental investigation of the characteristics of a separation region induced by the interaction of an externally generated oblique shock with the turbulent boundary layer formed in a rectangular half channel are discussed. The experiments were carried out in the supersonic wind tunnel of the Institute of Theoretical and Applied Mechanics SB RAS at a free-stream Mach number M ∞=3.01 over a range of Reynolds numbers Re 1=(9.7–47.5)×106 m-1 and at zero incidence and zero yaw of the model. Particular attention is paid to the size of the zone of the upstream propagation of disturbances (upstream influence region) under different experimental conditions: with varied values of the shock wave strength, half channel width, and Reynolds number. It is shown, in particular, that the normalized upstream influence region length as a function of inclination angle of the shock generator in a rectangular half channel is readily approximated by a simple exponential function. In support of the known reference data obtained for supersonic numbers M ∞ and moderate Re in other configurations, it is also shown that the upstream influence region length decreases with increasing Reynolds number. Generalization of experimental data on the length of the upstream influence region formed in similar geometric configurations is possible using an additional reference linear scale which is the distance from the leading edge of the shock generator to the exposed surface. A substantial dependence of the reference dimensions of separation region on the half channel width is also established. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Correlation of the separation region length in shock wave/channel boundary layer interaction

Loading next page...
 
/lp/springer_journal/correlation-of-the-separation-region-length-in-shock-wave-channel-spQB5K9JBU
Publisher
Springer-Verlag
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050139
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial