Correlation between luminescence and crystallization characteristics of Dy3+ doped P2O5–BaO–SeO2 glasses for white LED applications

Correlation between luminescence and crystallization characteristics of Dy3+ doped... Ternary phosphate host glass with the basic composition (P2O5 50%, BaO 40%, SeO2 10%) with varying Dy2O3 dopants (0.125, 0.25, 0.5, 1%) were prepared by the melting and annealing technique. The prepared glasses were collectively investigated by optical, FTIR and photoluminescence spectral measurements. The work was supplemented through thermal expansion and differential thermal measurements of the glasses to be able to conduct controlled thermal heat-treatment of the parent samples and converting them to their glass–ceramics derivatives. X-ray diffraction and scanning electron microscopic studies of the glass–ceramics were conducted to identify the separated crystalline phases during thermal heat-treatment and their morphological textures. The optical spectra of the dysprosium ions-doped glasses reveal 11 absorption bands in two rows extending from 350 to 476 nm and from 754 to 1700 nm which are assumed to be originating from the excitations of the ground state 6H15/2 to different transitions. The photoluminescence spectra show two characteristic emission bands in the blue and yellow region beside one faint band. The two characteristic emission bands are assigned to 4F9/2 → 6H13/2 and 6F9/2 → 6H15/2 transitions. The CIE chromaticity coordinates have been evaluated from the emission spectra to understand the suitability of the glasses for white light emitting diode. FTIR absorption spectra of the glasses and glass–ceramics show composite broad bands within the mid IR region and the deconvoluted spectra indicate the appearance of characteristic bands due to phosphate groups besides the sharing of Se–O vibrations. The thermal expansion data show the decrease of softening temperature with the introduction of 1% Dy2O3 in conformity of the presence of RE3+ ions in modifying positions. The DTA and X-ray data have been correlated with the housing of Dy3+ ions as modifiers within the glass structure and their action on the depolymerization of phosphate network which is assumed to promote the increase of barium selenium oxide crystalline phase during the conversion to glass–ceramic derivatives and the simultaneous limited decrease of the second main barium phosphate crystalline phase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Correlation between luminescence and crystallization characteristics of Dy3+ doped P2O5–BaO–SeO2 glasses for white LED applications

Loading next page...
 
/lp/springer_journal/correlation-between-luminescence-and-crystallization-characteristics-AumD1C9JVT
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-7143-8
Publisher site
See Article on Publisher Site

Abstract

Ternary phosphate host glass with the basic composition (P2O5 50%, BaO 40%, SeO2 10%) with varying Dy2O3 dopants (0.125, 0.25, 0.5, 1%) were prepared by the melting and annealing technique. The prepared glasses were collectively investigated by optical, FTIR and photoluminescence spectral measurements. The work was supplemented through thermal expansion and differential thermal measurements of the glasses to be able to conduct controlled thermal heat-treatment of the parent samples and converting them to their glass–ceramics derivatives. X-ray diffraction and scanning electron microscopic studies of the glass–ceramics were conducted to identify the separated crystalline phases during thermal heat-treatment and their morphological textures. The optical spectra of the dysprosium ions-doped glasses reveal 11 absorption bands in two rows extending from 350 to 476 nm and from 754 to 1700 nm which are assumed to be originating from the excitations of the ground state 6H15/2 to different transitions. The photoluminescence spectra show two characteristic emission bands in the blue and yellow region beside one faint band. The two characteristic emission bands are assigned to 4F9/2 → 6H13/2 and 6F9/2 → 6H15/2 transitions. The CIE chromaticity coordinates have been evaluated from the emission spectra to understand the suitability of the glasses for white light emitting diode. FTIR absorption spectra of the glasses and glass–ceramics show composite broad bands within the mid IR region and the deconvoluted spectra indicate the appearance of characteristic bands due to phosphate groups besides the sharing of Se–O vibrations. The thermal expansion data show the decrease of softening temperature with the introduction of 1% Dy2O3 in conformity of the presence of RE3+ ions in modifying positions. The DTA and X-ray data have been correlated with the housing of Dy3+ ions as modifiers within the glass structure and their action on the depolymerization of phosphate network which is assumed to promote the increase of barium selenium oxide crystalline phase during the conversion to glass–ceramic derivatives and the simultaneous limited decrease of the second main barium phosphate crystalline phase.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: May 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off