Correct blue-light regulation of pea Lhcb genes in an Arabidopsis background

Correct blue-light regulation of pea Lhcb genes in an Arabidopsis background Irradiation of etiolated Arabidopsis or pea, or dim-red-light-grown pea seedlings with a single, short (under 10 s) pulse of blue light (threshold at 0.1 µmol/m2) is sufficient to induce the expression of specific members of the Lhcb gene family including the pea Lhcb1*4 gene and the Arabidopsis Lhcb1*3 gene. Other Lhcb genes, such as the pea Lhcb1*3 gene and the Arabidopsis Lhcb1*1 and 1*2 genes are unaffected by this blue-light treatment. Transgenic Arabidopsis bearing pea Lhcb1*3::Gus (β-glucuronidase), pea Lhcb1*4::Gus or Arabidopsis Lhcb1*3::Gus constructs were used to determine if pea and Arabidopsis employ a similar mechanism to achieve blue-light induced Lhcb expression. Examination of the respective Gus expression patterns in white-light-grown seedlings indicates that the pea promoters are active and properly expressed in the Arabidopsis background. Irradiation of dark-grown Arabidopsis with a 20 s pulse of blue light with a total fluence of 100 µmol/m-2 results in expression of the pea Lhcb1*4::Gus (β-glucuronidase) construct, but not of the pea Lhcb1*3::Gus construct indicating that the pea promoters respond correctly to blue light in the Arabidopsis background. Fluence-response, time-course and reciprocity characteristics for the blue-light-induced expression of the pea Lhcb1*4::Gus construct closely resemble those of the endogenous Arabidopsis Lhcb genes, confirming the proper interpretation of the Arabidopsis blue-light-signaling mechanism by the pea Lhcb1*4 promoter and suggesting that the signaling mechanisms in the two plants are very similar, if not identical. Fluence response data for the steady-state level of transcript derived from an Arabidopsis Lhcb1*3::Gus construct extending 200 bp upstream of the site of transcription indicate that the blue light responsive element(s) are contained within this 200 bp region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Correct blue-light regulation of pea Lhcb genes in an Arabidopsis background

Loading next page...
 
/lp/springer_journal/correct-blue-light-regulation-of-pea-lhcb-genes-in-an-arabidopsis-gXHMb8DJAo
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005842503952
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial