Copper corrosion inhibition by combined effect of inhibitor and passive film in alkaline solution

Copper corrosion inhibition by combined effect of inhibitor and passive film in alkaline solution The work presents the combined effect of methionine molecules and cuprous oxide passive film on the corrosion inhibition of copper in 1 M NaOH solution by using potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy/energy dispersive X-ray analysis and theoretical calculations. The results reveal that methionine is an effective inhibitor for copper in 1 M NaOH solution and its inhibition efficiency is increased by increasing its concentration. Also, the electrochemical results showed that methionine mainly suppresses the cathodic process as a cathodic-typed inhibitor by adsorption, and the adsorption of methionine can occur on the passive film surface (cuprous oxide) of copper. The adsorbed film of inhibitors combines with the cuprous oxide passive film, and provides a double-layer protection for copper in alkaline solution. Quantum chemical calculation was applied to investigate the inhibition mechanism of methionine, and molecular dynamics simulation was further performed to illustrate the double-layer protection system for copper in alkaline solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Copper corrosion inhibition by combined effect of inhibitor and passive film in alkaline solution

Loading next page...
 
/lp/springer_journal/copper-corrosion-inhibition-by-combined-effect-of-inhibitor-and-C3zzdFWrSM
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1910-4
Publisher site
See Article on Publisher Site

Abstract

The work presents the combined effect of methionine molecules and cuprous oxide passive film on the corrosion inhibition of copper in 1 M NaOH solution by using potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy/energy dispersive X-ray analysis and theoretical calculations. The results reveal that methionine is an effective inhibitor for copper in 1 M NaOH solution and its inhibition efficiency is increased by increasing its concentration. Also, the electrochemical results showed that methionine mainly suppresses the cathodic process as a cathodic-typed inhibitor by adsorption, and the adsorption of methionine can occur on the passive film surface (cuprous oxide) of copper. The adsorbed film of inhibitors combines with the cuprous oxide passive film, and provides a double-layer protection for copper in alkaline solution. Quantum chemical calculation was applied to investigate the inhibition mechanism of methionine, and molecular dynamics simulation was further performed to illustrate the double-layer protection system for copper in alkaline solution.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 6, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off