Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal locations

Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal... Degenerated oligonucleotide primers were used to amplify, clone, and analyze sequence heterogeneity and chromo-somal distribution of 23 PCR fragments corresponding to the reverse transcriptase domain of copia-like retrotrans-posons in rice. Of the 23 fragments 22 could be aligned by their deduced amino acid sequences and were divided into 6 groups according to the phylogenetic and Southern blot analyses. Amino acid sequence differences among the 22 aligned fragments ranged from 1 to 64%. Southern blot analysis of 10 rice accessions including indica, japonica and common wild rice, using these 23 fragments as probes, showed that copia-like retrotransposons were present in moderate to high copy numbers in all the rice genome although the exact copy number cannot be determined. The major difference revealed by southern analysis is a differentiation between the four indica varieties as one group and the four japonica varieties and the two wild rice accessions as another group. Polymorphisms were also detected among the indica and japonica varieties by major bands and repeatable minor bands. Five hybridization bands were mapped to chromosomes 3, 4, 8, and 9, respectively. All the five bands were inherited in a dominant Mendelian fashion and were not allelic with each other, indicating that the same element did not reside on the same location in different rice accessions. No transcript of the copia-like reverse transcriptase was detected on northern blot. The results suggest that the sequence heterogeneity and distributional variability of retrotransposons may be one of contributory factors causing genetic diversity in rice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Copia-like retrotransposons in rice: sequence heterogeneity, species distribution and chromosomal locations

Loading next page...
 
/lp/springer_journal/copia-like-retrotransposons-in-rice-sequence-heterogeneity-species-eTMKxafAZ9
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005715118851
Publisher site
See Article on Publisher Site

Abstract

Degenerated oligonucleotide primers were used to amplify, clone, and analyze sequence heterogeneity and chromo-somal distribution of 23 PCR fragments corresponding to the reverse transcriptase domain of copia-like retrotrans-posons in rice. Of the 23 fragments 22 could be aligned by their deduced amino acid sequences and were divided into 6 groups according to the phylogenetic and Southern blot analyses. Amino acid sequence differences among the 22 aligned fragments ranged from 1 to 64%. Southern blot analysis of 10 rice accessions including indica, japonica and common wild rice, using these 23 fragments as probes, showed that copia-like retrotransposons were present in moderate to high copy numbers in all the rice genome although the exact copy number cannot be determined. The major difference revealed by southern analysis is a differentiation between the four indica varieties as one group and the four japonica varieties and the two wild rice accessions as another group. Polymorphisms were also detected among the indica and japonica varieties by major bands and repeatable minor bands. Five hybridization bands were mapped to chromosomes 3, 4, 8, and 9, respectively. All the five bands were inherited in a dominant Mendelian fashion and were not allelic with each other, indicating that the same element did not reside on the same location in different rice accessions. No transcript of the copia-like reverse transcriptase was detected on northern blot. The results suggest that the sequence heterogeneity and distributional variability of retrotransposons may be one of contributory factors causing genetic diversity in rice.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 14, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off