Coordination Polyhedra RuXn (X = O, S, Se, Te) in Crystal Structures

Coordination Polyhedra RuXn (X = O, S, Se, Te) in Crystal Structures Crystal-chemical analysis of 312 compounds containing complexes [Ru a X b ] z– (X = O, S, Se, Te) is performed using Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres. In most of these complexes, Ru atoms have coordination number (CN) 6 and form RuX6 octahedra. However, only with respect to oxygen do the Ru(V)–Ru(VII) atoms exhibit CN 5 or 4 with trigonal-bipyramidal and tetrahedral coordination, respectively.The effect of the valence state of the Ru atoms on their stereochemistry is considered. The important role of the Ru–Ru interactions in the structure of the Ru(II)–Ru(V) compounds is established. As a result of the Ru–Ru interactions, the RuX6 octahedra are linked through a face or common edge or give O5Ru–RuO- dimers in which every metal atom occupies one of the vertices of an octahedron formed by the neighboring Ru atom.The dependence of the Ru–Ru and Ru–O bond orders on their lengths is established on the basis of a crystal-structure analysis and the 18-electron rule. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Coordination Chemistry Springer Journals

Coordination Polyhedra RuXn (X = O, S, Se, Te) in Crystal Structures

Loading next page...
 
/lp/springer_journal/coordination-polyhedra-ruxn-x-o-s-se-te-in-crystal-structures-95XBRZ6jpv
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2002 by MAIK "Nauka/Interperiodica"
Subject
Chemistry; Physical Chemistry
ISSN
1070-3284
eISSN
1608-3318
D.O.I.
10.1023/A:1014728103120
Publisher site
See Article on Publisher Site

Abstract

Crystal-chemical analysis of 312 compounds containing complexes [Ru a X b ] z– (X = O, S, Se, Te) is performed using Voronoi–Dirichlet polyhedra (VDP) and the method of intersecting spheres. In most of these complexes, Ru atoms have coordination number (CN) 6 and form RuX6 octahedra. However, only with respect to oxygen do the Ru(V)–Ru(VII) atoms exhibit CN 5 or 4 with trigonal-bipyramidal and tetrahedral coordination, respectively.The effect of the valence state of the Ru atoms on their stereochemistry is considered. The important role of the Ru–Ru interactions in the structure of the Ru(II)–Ru(V) compounds is established. As a result of the Ru–Ru interactions, the RuX6 octahedra are linked through a face or common edge or give O5Ru–RuO- dimers in which every metal atom occupies one of the vertices of an octahedron formed by the neighboring Ru atom.The dependence of the Ru–Ru and Ru–O bond orders on their lengths is established on the basis of a crystal-structure analysis and the 18-electron rule.

Journal

Russian Journal of Coordination ChemistrySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off