Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine

Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to... To gain insight into the regulatory mechanisms and the signals responsible for the adaptation of higher plants to conditions of varying sulfate availability, we have isolated from a sulfate- deprived root library maize cDNAs encoding sulfate permease (ZmST1) and ATP sulfurylase (ZmAS1), the two earliest components of the sulfur assimilation pathway. The levels of ZmST1 and ZmAS1 transcripts concomitantly increased in both roots and shoots of seedlings grown under sulfate-deprived conditions, and rapidly decreased when the external sulfate supply was restored. This coordinate response, which was not observed under conditions of limiting nitrate or phosphate, correlated with the depletion of glutathione, rather than sulfate stores. However, drastically reducing glutathione levels through treatment with buthionine sulfoximine, a specific inhibitor of γ-glutamyl cysteine synthetase, did not provide an adequate stimulus for the up- regulation of either sulfate permease or ATP sulfurylase messengers. Indeed, L-cysteine, but not D-cysteine, effectively down-regulated both transcripts when supplied to sulfur-deficient seedlings under conditions of blocked glutathione synthesis. Altogether, these data provide evidence for the coordinate regulation of sulfur assimilation mRNAs in higher plants and for the glutathione-independent involvement of cysteine as a stereospecific pretranslational modulator of the expression of sulfur status-responsive genes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by L-cysteine

Loading next page...
 
/lp/springer_journal/coordinate-modulation-of-maize-sulfate-permease-and-atp-sulfurylase-BBg78dnhNH
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006148815106
Publisher site
See Article on Publisher Site

Abstract

To gain insight into the regulatory mechanisms and the signals responsible for the adaptation of higher plants to conditions of varying sulfate availability, we have isolated from a sulfate- deprived root library maize cDNAs encoding sulfate permease (ZmST1) and ATP sulfurylase (ZmAS1), the two earliest components of the sulfur assimilation pathway. The levels of ZmST1 and ZmAS1 transcripts concomitantly increased in both roots and shoots of seedlings grown under sulfate-deprived conditions, and rapidly decreased when the external sulfate supply was restored. This coordinate response, which was not observed under conditions of limiting nitrate or phosphate, correlated with the depletion of glutathione, rather than sulfate stores. However, drastically reducing glutathione levels through treatment with buthionine sulfoximine, a specific inhibitor of γ-glutamyl cysteine synthetase, did not provide an adequate stimulus for the up- regulation of either sulfate permease or ATP sulfurylase messengers. Indeed, L-cysteine, but not D-cysteine, effectively down-regulated both transcripts when supplied to sulfur-deficient seedlings under conditions of blocked glutathione synthesis. Altogether, these data provide evidence for the coordinate regulation of sulfur assimilation mRNAs in higher plants and for the glutathione-independent involvement of cysteine as a stereospecific pretranslational modulator of the expression of sulfur status-responsive genes.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off