Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato

Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones... Stress 70 molecular chaperones are found in all the major subcellular compartments of plant cells, and they are encoded by a multigene family. Twelve members of this family have been identified in spinach. The expression of the stress 70 molecular chaperones in response to heat shock is well-known and it appears that low temperature exposure can also stimulate their expression. However, it has been difficult to determine which member(s) of the family are specifically responsive to low temperature. This study was initiated to determine the levels of expression of the stress 70 family members and other selected chaperones in response to high and low temperature exposure. During heat shock of spinach, of the 10 stress 70 family members that were examined, all 10 showed increased RNA levels after one hour, and all showed down-regulation at longer durations of high temperature exposure. However, the response to low temperature was quite variable and complex. Some members were induced, some were transiently up-regulated, while others showed sustained up-regulation at a low non-freezing temperature. In comparison, the entirety of the molecular chaperone expression response of cold-sensitive tomato at the same low non-freezing temperature was even more dramatic with 11 of 15 molecular chaperones tested exhibiting elevated expression. The increased chaperone expression is consistent with the hypothesis that the biogenesis or stability of some proteins is compromised at low non-freezing temperatures. In contrast, mild freezing sufficient to cause injury of spinach did not materially activate chaperone expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato

Loading next page...
 
/lp/springer_journal/coordinate-and-non-coordinate-expression-of-the-stress-70-family-and-disIYwca8E
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006100532501
Publisher site
See Article on Publisher Site

Abstract

Stress 70 molecular chaperones are found in all the major subcellular compartments of plant cells, and they are encoded by a multigene family. Twelve members of this family have been identified in spinach. The expression of the stress 70 molecular chaperones in response to heat shock is well-known and it appears that low temperature exposure can also stimulate their expression. However, it has been difficult to determine which member(s) of the family are specifically responsive to low temperature. This study was initiated to determine the levels of expression of the stress 70 family members and other selected chaperones in response to high and low temperature exposure. During heat shock of spinach, of the 10 stress 70 family members that were examined, all 10 showed increased RNA levels after one hour, and all showed down-regulation at longer durations of high temperature exposure. However, the response to low temperature was quite variable and complex. Some members were induced, some were transiently up-regulated, while others showed sustained up-regulation at a low non-freezing temperature. In comparison, the entirety of the molecular chaperone expression response of cold-sensitive tomato at the same low non-freezing temperature was even more dramatic with 11 of 15 molecular chaperones tested exhibiting elevated expression. The increased chaperone expression is consistent with the hypothesis that the biogenesis or stability of some proteins is compromised at low non-freezing temperatures. In contrast, mild freezing sufficient to cause injury of spinach did not materially activate chaperone expression.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off