Cooperative Substrate Oxidation by Mitochondria from Castor Bean Hypocotyls

Cooperative Substrate Oxidation by Mitochondria from Castor Bean Hypocotyls Cooperative oxidation of succinate and exogenous NADH was followed in the mitochondria from five- to six-day-old castor bean (Ricinus communisL.) seedlings. Although succinate was oxidized at a much higher rate than NADH, the former inconsiderably (less than 15%) inhibited the oxidation of the latter substrate in state 4, while, in state 3 (in the presence of ATP), the two substrates did not compete and were jointly oxidized. When two substrates were oxidized by the mitochondria with the alternative CN-resistant oxidase (AO) inhibited with salicylhydroxamic acid, the rate of NADH oxidation in state 4 dropped by over 40% as compared to the initial rate. Meanwhile, the rate of succinate oxidation was not considerably affected by AO inhibition. We believe that one of the AO functions in the mitochondria is to provide for noncompeting oxidation of two (or more) substrates by employing two (or several) dehydrogenases of the respiratory chain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Cooperative Substrate Oxidation by Mitochondria from Castor Bean Hypocotyls

Loading next page...
 
/lp/springer_journal/cooperative-substrate-oxidation-by-mitochondria-from-castor-bean-00HlT3Rozs
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1009039831060
Publisher site
See Article on Publisher Site

Abstract

Cooperative oxidation of succinate and exogenous NADH was followed in the mitochondria from five- to six-day-old castor bean (Ricinus communisL.) seedlings. Although succinate was oxidized at a much higher rate than NADH, the former inconsiderably (less than 15%) inhibited the oxidation of the latter substrate in state 4, while, in state 3 (in the presence of ATP), the two substrates did not compete and were jointly oxidized. When two substrates were oxidized by the mitochondria with the alternative CN-resistant oxidase (AO) inhibited with salicylhydroxamic acid, the rate of NADH oxidation in state 4 dropped by over 40% as compared to the initial rate. Meanwhile, the rate of succinate oxidation was not considerably affected by AO inhibition. We believe that one of the AO functions in the mitochondria is to provide for noncompeting oxidation of two (or more) substrates by employing two (or several) dehydrogenases of the respiratory chain.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off