Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms

Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive... While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: When is the product of finitely many positive definite quadratic forms convex, and what is the Legendre-Fenchel transform for it ? First, we show that the convexity of the product is determined intrinsically by the condition number of so-called ‘scaled matrices’ associated with quadratic forms involved. The main result claims that if the condition number of these scaled matrices are bounded above by an explicit constant (which depends only on the number of quadratic forms involved), then the product function is convex. Second, we prove that the Legendre-Fenchel transform for the product of positive definite quadratic forms can be expressed, and the computation of the transform amounts to finding the solution to a system of equations (or equally, finding a Brouwer’s fixed point of a mapping) with a special structure. Thus, a broader question than the open “Question 11” in Hiriart-Urruty (SIAM Rev. 49, 225–273, 2007 ) is addressed in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Convexity Conditions and the Legendre-Fenchel Transform for the Product of Finitely Many Positive Definite Quadratic Forms

Loading next page...
 
/lp/springer_journal/convexity-conditions-and-the-legendre-fenchel-transform-for-the-HAlVL039zb
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Mathematics; Numerical and Computational Physics; Mathematical Methods in Physics; Theoretical, Mathematical and Computational Physics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-010-9109-6
Publisher site
See Article on Publisher Site

Abstract

While the product of finitely many convex functions has been investigated in the field of global optimization, some fundamental issues such as the convexity condition and the Legendre-Fenchel transform for the product function remain unresolved. Focusing on quadratic forms, this paper is aimed at addressing the question: When is the product of finitely many positive definite quadratic forms convex, and what is the Legendre-Fenchel transform for it ? First, we show that the convexity of the product is determined intrinsically by the condition number of so-called ‘scaled matrices’ associated with quadratic forms involved. The main result claims that if the condition number of these scaled matrices are bounded above by an explicit constant (which depends only on the number of quadratic forms involved), then the product function is convex. Second, we prove that the Legendre-Fenchel transform for the product of positive definite quadratic forms can be expressed, and the computation of the transform amounts to finding the solution to a system of equations (or equally, finding a Brouwer’s fixed point of a mapping) with a special structure. Thus, a broader question than the open “Question 11” in Hiriart-Urruty (SIAM Rev. 49, 225–273, 2007 ) is addressed in this paper.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Dec 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off