Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation

Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation This paper concerns characterizations of approximation classes associated with adaptive finite element methods with isotropic h-refinements. It is known from the seminal work of Binev, Dahmen, DeVore and Petrushev that such classes are related to Besov spaces. The range of parameters for which the inverse embedding results hold is rather limited, and recently, Gaspoz and Morin have shown, among other things, that this limitation disappears if we replace Besov spaces by suitable approximation spaces associated with finite element approximation from uniformly refined triangulations. We call the latter spaces multievel approximation spaces and argue that these spaces are placed naturally halfway between adaptive approximation classes and Besov spaces, in the sense that it is more natural to relate multilevel approximation spaces with either Besov spaces or adaptive approximation classes, than to go directly from adaptive approximation classes to Besov spaces. In particular, we prove embeddings of multilevel approximation spaces into adaptive approximation classes, complementing the inverse embedding theorems of Gaspoz and Morin. Furthermore, in the present paper, we initiate a theoretical study of adaptive approximation classes that are defined using a modified notion of error, the so-called total error, which is the energy error plus an oscillation term. Such approximation classes have recently been shown to arise naturally in the analysis of adaptive algorithms. We first develop a sufficiently general approximation theory framework to handle such modifications, and then apply the abstract theory to second-order elliptic problems discretized by Lagrange finite elements, resulting in characterizations of modified approximation classes in terms of memberships of the problem solution and data into certain approximation spaces, which are in turn related to Besov spaces. Finally, it should be noted that throughout the paper we paid equal attention to both conforming and non-conforming triangulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Foundations of Computational Mathematics Springer Journals

Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation

Loading next page...
 
/lp/springer_journal/convergence-rates-of-adaptive-methods-besov-spaces-and-multilevel-rcgy4Ac70y
Publisher
Springer US
Copyright
Copyright © 2016 by SFoCM
Subject
Mathematics; Numerical Analysis; Economics, general; Applications of Mathematics; Linear and Multilinear Algebras, Matrix Theory; Math Applications in Computer Science; Computer Science, general
ISSN
1615-3375
eISSN
1615-3383
D.O.I.
10.1007/s10208-016-9308-x
Publisher site
See Article on Publisher Site

Abstract

This paper concerns characterizations of approximation classes associated with adaptive finite element methods with isotropic h-refinements. It is known from the seminal work of Binev, Dahmen, DeVore and Petrushev that such classes are related to Besov spaces. The range of parameters for which the inverse embedding results hold is rather limited, and recently, Gaspoz and Morin have shown, among other things, that this limitation disappears if we replace Besov spaces by suitable approximation spaces associated with finite element approximation from uniformly refined triangulations. We call the latter spaces multievel approximation spaces and argue that these spaces are placed naturally halfway between adaptive approximation classes and Besov spaces, in the sense that it is more natural to relate multilevel approximation spaces with either Besov spaces or adaptive approximation classes, than to go directly from adaptive approximation classes to Besov spaces. In particular, we prove embeddings of multilevel approximation spaces into adaptive approximation classes, complementing the inverse embedding theorems of Gaspoz and Morin. Furthermore, in the present paper, we initiate a theoretical study of adaptive approximation classes that are defined using a modified notion of error, the so-called total error, which is the energy error plus an oscillation term. Such approximation classes have recently been shown to arise naturally in the analysis of adaptive algorithms. We first develop a sufficiently general approximation theory framework to handle such modifications, and then apply the abstract theory to second-order elliptic problems discretized by Lagrange finite elements, resulting in characterizations of modified approximation classes in terms of memberships of the problem solution and data into certain approximation spaces, which are in turn related to Besov spaces. Finally, it should be noted that throughout the paper we paid equal attention to both conforming and non-conforming triangulations.

Journal

Foundations of Computational MathematicsSpringer Journals

Published: Mar 3, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off