Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation

Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation This paper concerns characterizations of approximation classes associated with adaptive finite element methods with isotropic h-refinements. It is known from the seminal work of Binev, Dahmen, DeVore and Petrushev that such classes are related to Besov spaces. The range of parameters for which the inverse embedding results hold is rather limited, and recently, Gaspoz and Morin have shown, among other things, that this limitation disappears if we replace Besov spaces by suitable approximation spaces associated with finite element approximation from uniformly refined triangulations. We call the latter spaces multievel approximation spaces and argue that these spaces are placed naturally halfway between adaptive approximation classes and Besov spaces, in the sense that it is more natural to relate multilevel approximation spaces with either Besov spaces or adaptive approximation classes, than to go directly from adaptive approximation classes to Besov spaces. In particular, we prove embeddings of multilevel approximation spaces into adaptive approximation classes, complementing the inverse embedding theorems of Gaspoz and Morin. Furthermore, in the present paper, we initiate a theoretical study of adaptive approximation classes that are defined using a modified notion of error, the so-called total error, which is the energy error plus an oscillation term. Such approximation classes have recently been shown to arise naturally in the analysis of adaptive algorithms. We first develop a sufficiently general approximation theory framework to handle such modifications, and then apply the abstract theory to second-order elliptic problems discretized by Lagrange finite elements, resulting in characterizations of modified approximation classes in terms of memberships of the problem solution and data into certain approximation spaces, which are in turn related to Besov spaces. Finally, it should be noted that throughout the paper we paid equal attention to both conforming and non-conforming triangulations. Foundations of Computational Mathematics Springer Journals

Convergence Rates of Adaptive Methods, Besov Spaces, and Multilevel Approximation

Loading next page...
Springer US
Copyright © 2016 by SFoCM
Mathematics; Numerical Analysis; Economics, general; Applications of Mathematics; Linear and Multilinear Algebras, Matrix Theory; Math Applications in Computer Science; Computer Science, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial