# Convergence Properties of Projection and Contraction Methods for Variational Inequality Problems

Convergence Properties of Projection and Contraction Methods for Variational Inequality Problems In this paper we develop the convergence theory of a general class of projection and contraction algorithms (PC method), where an extended stepsize rule is used, for solving variational inequality (VI) problems. It is shown that, by defining a scaled projection residue, the PC method forces the sequence of the residues to zero. It is also shown that, by defining a projected function, the PC method forces the sequence of projected functions to zero. A consequence of this result is that if the PC method converges to a nondegenerate solution of the VI problem, then after a finite number of iterations, the optimal face is identified. Finally, we study local convergence behavior of the extragradient algorithm for solving the KKT system of the inequality constrained VI problem. \keywords{Variational inequality, Projection and contraction method, Predictor-corrector stepsize, Convergence property.} \amsclass{90C30, 90C33, 65K05.} http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

# Convergence Properties of Projection and Contraction Methods for Variational Inequality Problems

, Volume 43 (2) – Jan 1, 2001
22 pages

/lp/springer_journal/convergence-properties-of-projection-and-contraction-methods-for-jr0j0oqIYS
Publisher
Springer-Verlag
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s002450010023
Publisher site
See Article on Publisher Site

### Abstract

In this paper we develop the convergence theory of a general class of projection and contraction algorithms (PC method), where an extended stepsize rule is used, for solving variational inequality (VI) problems. It is shown that, by defining a scaled projection residue, the PC method forces the sequence of the residues to zero. It is also shown that, by defining a projected function, the PC method forces the sequence of projected functions to zero. A consequence of this result is that if the PC method converges to a nondegenerate solution of the VI problem, then after a finite number of iterations, the optimal face is identified. Finally, we study local convergence behavior of the extragradient algorithm for solving the KKT system of the inequality constrained VI problem. \keywords{Variational inequality, Projection and contraction method, Predictor-corrector stepsize, Convergence property.} \amsclass{90C30, 90C33, 65K05.}

### Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Jan 1, 2001

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations

Abstract access only

18 million full-text articles

Print

20 pages / month

PDF Discount

20% off