Convergence of Density Expansions of Correlation Functions and the Ornstein–Zernike Equation

Convergence of Density Expansions of Correlation Functions and the Ornstein–Zernike Equation We prove absolute convergence of the multi-body correlation functions as a power series in the density uniformly in their arguments. This is done by working in the context of the cluster expansion in the canonical ensemble and by expressing the correlation functions as the derivative of the logarithm of an appropriately extended partition function. In the thermodynamic limit, due to combinatorial cancellations, we show that the coefficients of the above series are expressed by sums over some class of two-connected graphs. Furthermore, we prove the convergence of the density expansion of the “direct correlation function” which is based on a completely different approach and it is valid only for some integral norm. Precisely, this integral norm is suitable to derive the Ornstein–Zernike equation. As a further outcome, we obtain a rigorous quantification of the error in the Percus–Yevick approximation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annales Henri Poincaré Springer Journals

Convergence of Density Expansions of Correlation Functions and the Ornstein–Zernike Equation

Loading next page...
 
/lp/springer_journal/convergence-of-density-expansions-of-correlation-functions-and-the-GhN7yuWajw
Publisher
Springer International Publishing
Copyright
Copyright © 2018 by The Author(s)
Subject
Physics; Theoretical, Mathematical and Computational Physics; Dynamical Systems and Ergodic Theory; Quantum Physics; Mathematical Methods in Physics; Classical and Quantum Gravitation, Relativity Theory; Elementary Particles, Quantum Field Theory
ISSN
1424-0637
eISSN
1424-0661
D.O.I.
10.1007/s00023-018-0655-9
Publisher site
See Article on Publisher Site

Abstract

We prove absolute convergence of the multi-body correlation functions as a power series in the density uniformly in their arguments. This is done by working in the context of the cluster expansion in the canonical ensemble and by expressing the correlation functions as the derivative of the logarithm of an appropriately extended partition function. In the thermodynamic limit, due to combinatorial cancellations, we show that the coefficients of the above series are expressed by sums over some class of two-connected graphs. Furthermore, we prove the convergence of the density expansion of the “direct correlation function” which is based on a completely different approach and it is valid only for some integral norm. Precisely, this integral norm is suitable to derive the Ornstein–Zernike equation. As a further outcome, we obtain a rigorous quantification of the error in the Percus–Yevick approximation.

Journal

Annales Henri PoincaréSpringer Journals

Published: Feb 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off