Convection driven by a horizontal temperature gradient in a confined aqueous surfactant solution: the effect of noncondensables

Convection driven by a horizontal temperature gradient in a confined aqueous surfactant solution:... Buoyancy–thermocapillary convection in liquid layers undergoing phase change driven by a horizontal temperature gradient in a sealed cavity in the near-absence of noncondensables is a flow relevant to evaporative cooling. Yet most of the experimental studies have instead considered convection under air at ambient pressures. Convection driven by buoyancy and Marangoni effects in a ~0.3-cm-deep layer of an aqueous surfactant solution in a closed rectangular test cell was therefore studied using particle image velocimetry. Convection under air at ambient conditions was compared with that under conditions where the gas phase was dominated by water vapor. The initial results suggest that noncondensables have a significant effect on the liquid-phase flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Convection driven by a horizontal temperature gradient in a confined aqueous surfactant solution: the effect of noncondensables

Loading next page...
 
/lp/springer_journal/convection-driven-by-a-horizontal-temperature-gradient-in-a-confined-jFw3IUW0Um
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1663-7
Publisher site
See Article on Publisher Site

Abstract

Buoyancy–thermocapillary convection in liquid layers undergoing phase change driven by a horizontal temperature gradient in a sealed cavity in the near-absence of noncondensables is a flow relevant to evaporative cooling. Yet most of the experimental studies have instead considered convection under air at ambient pressures. Convection driven by buoyancy and Marangoni effects in a ~0.3-cm-deep layer of an aqueous surfactant solution in a closed rectangular test cell was therefore studied using particle image velocimetry. Convection under air at ambient conditions was compared with that under conditions where the gas phase was dominated by water vapor. The initial results suggest that noncondensables have a significant effect on the liquid-phase flow.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 8, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off