Controlling the mechanoelasticity of model biomembranes with room-temperature ionic liquids

Controlling the mechanoelasticity of model biomembranes with room-temperature ionic liquids Room-temperature ionic liquids (RTILs) are a vast class of organic non-aqueous electrolytes whose interaction with biomolecules is receiving great attention for potential applications in bio-nano-technology. Recently, it has been shown that RTILs dispersed at low concentrations at the water-biomembrane interface diffuse into the lipid region of the biomembrane, without disrupting the integrity of the bilayer structure. In this letter, we present the first exploratory study on the effect of absorbed RTILs on the mechanoelasticity of a model biomembrane. Using atomic force microscopy, we found that both the rupture force and the elastic modulus increase upon the insertion of RTILs into the biomembrane. This preliminary result points to the potential use of RTILs to control the mechanoelasticity of cell membranes, opening new avenues for applications in bio-medicine and, more generally, bio-nano-technology. The variety of RTILs offers a vast playground for future studies and potential applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biophysical Reviews Springer Journals

Controlling the mechanoelasticity of model biomembranes with room-temperature ionic liquids

Loading next page...
 
/lp/springer_journal/controlling-the-mechanoelasticity-of-model-biomembranes-with-room-ZbjqhhGSWl
Publisher
Springer Journals
Copyright
Copyright © 2018 by International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Biochemistry, general; Biological and Medical Physics, Biophysics; Cell Biology; Membrane Biology; Biological Techniques; Nanotechnology
ISSN
1867-2450
eISSN
1867-2469
D.O.I.
10.1007/s12551-018-0424-5
Publisher site
See Article on Publisher Site

Abstract

Room-temperature ionic liquids (RTILs) are a vast class of organic non-aqueous electrolytes whose interaction with biomolecules is receiving great attention for potential applications in bio-nano-technology. Recently, it has been shown that RTILs dispersed at low concentrations at the water-biomembrane interface diffuse into the lipid region of the biomembrane, without disrupting the integrity of the bilayer structure. In this letter, we present the first exploratory study on the effect of absorbed RTILs on the mechanoelasticity of a model biomembrane. Using atomic force microscopy, we found that both the rupture force and the elastic modulus increase upon the insertion of RTILs into the biomembrane. This preliminary result points to the potential use of RTILs to control the mechanoelasticity of cell membranes, opening new avenues for applications in bio-medicine and, more generally, bio-nano-technology. The variety of RTILs offers a vast playground for future studies and potential applications.

Journal

Biophysical ReviewsSpringer Journals

Published: May 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off