Controlled atomization using a twin-fluid swirl atomizer

Controlled atomization using a twin-fluid swirl atomizer This paper presents the results of an experimental study of a twin-fluid internally mixed swirl atomizer. In this type of injectors, atomization is attained by injecting a small amount of air (i.e. of the order of less than 16% of the mass flow rate of liquid) into a liquid stream within the injector and the two-phase air liquid mixture is passed through a swirling passage to impart a swirling motion to the flow. Since most of the energy for atomization is supplied to the liquid by the atomizing air, a significantly small pressure drop can produce very fine spray with a small amount of atomizing air. At low values of air–liquid mass ratio (ALR), the appreciable tangential component of velocity with respect to the axial velocity provides a hollow cone spray structure, which turns into a solid cone spray with the increase in axial momentum, through either an increase in ALR or the liquid supply pressure. The results presented in this paper suggest that the investigated injector could be used to control the flow rate and spray characteristics (e.g. spray cone angle, spray solidity, breaking distance, and the droplet diameter) independent of each other by simultaneously varying the supply pressure of the liquid and the atomizing air flow rate. The controlled atomization studied in this paper for a twin-fluid internally mixed swirl atomizer makes it attractive to be used for various commercial applications as the atomizer is capable of providing various spray characteristics depending upon the application requirement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Controlled atomization using a twin-fluid swirl atomizer

Loading next page...
 
/lp/springer_journal/controlled-atomization-using-a-twin-fluid-swirl-atomizer-OtwXd4zkO0
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0191-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial