Control over structural-dimensional characteristics of tungsten disulfide particles in aerosol-assisted chemical vapor deposition

Control over structural-dimensional characteristics of tungsten disulfide particles in... Solutions of ammonium thiotungstate in dimethylformamide were used to synthesize spherical tungsten disulfide particles with average radius of 500–100 nm by the method of aerosol-assisted chemical vapor deposition. Nanoparticles with composition close to stoichiometric tungsten disulfide are formed at pyrolysis temperatures not lower than 800°C. It was found that the average particle radius linearly decreases as the reagent concentration in solution becomes lower, and the nebulizer power has no effect within the range under study on the size characteristics and structure of the particles obtained. It was demonstrated that the particles have a layered structure that is formed in all probability by S–W–S packets, which must provide high antifriction properties of the material in its use as a high-temperature solid lubricant. The results obtained indicate that the size of tungsten disulfide particles can be controlled in a wide range in the course of the aerosol-assisted chemical vapor deposition. This may be of interest for developing a technology for creating high-temperature wear-resistant antifriction coatings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Control over structural-dimensional characteristics of tungsten disulfide particles in aerosol-assisted chemical vapor deposition

Loading next page...
 
/lp/springer_journal/control-over-structural-dimensional-characteristics-of-tungsten-JFmJly04Rs
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216120041
Publisher site
See Article on Publisher Site

Abstract

Solutions of ammonium thiotungstate in dimethylformamide were used to synthesize spherical tungsten disulfide particles with average radius of 500–100 nm by the method of aerosol-assisted chemical vapor deposition. Nanoparticles with composition close to stoichiometric tungsten disulfide are formed at pyrolysis temperatures not lower than 800°C. It was found that the average particle radius linearly decreases as the reagent concentration in solution becomes lower, and the nebulizer power has no effect within the range under study on the size characteristics and structure of the particles obtained. It was demonstrated that the particles have a layered structure that is formed in all probability by S–W–S packets, which must provide high antifriction properties of the material in its use as a high-temperature solid lubricant. The results obtained indicate that the size of tungsten disulfide particles can be controlled in a wide range in the course of the aerosol-assisted chemical vapor deposition. This may be of interest for developing a technology for creating high-temperature wear-resistant antifriction coatings.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Apr 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off