Control of the properties of catalysts for methane aromatization by synthesizing ZSM-5 zeolites with different crystallite sizes

Control of the properties of catalysts for methane aromatization by synthesizing ZSM-5 zeolites... MFI zeolite materials (ZSM-5) with crystal sizes in the range from 0.10 to 1.70 μm have been synthesized. Acidic and surface properties, phase and morphological composition of the prepared zeolites have been studied by the IR sprectroscopy, nitrogen porosimetry, XRD, and scanning electron microscopy. Increasing crystal size was shown to decrease the general acidity of the zeolite. Synthesized zeolites served as supports for molybden-containing catalysts for methane aromatization prepared by using the solid phase synthesis approach. Diffuse reflectance IR spectroscopy, thermoprogrammed desoption of ammonia and 27Al NMR spectroscopy were used to characterize the physicochemical properties of the catalysts. An increase in the crystallite size of the zeolite favors a decrease in the acidity of the catalysts and inhibits the formation of alumina molybdate during the catalyst preparation. As a result, a tendency to coke formation is suppressed and the performance of the catalysts in methane aromatization improved: methane conversion and aromatic hydrocarbon yield increase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Chemical Bulletin Springer Journals

Control of the properties of catalysts for methane aromatization by synthesizing ZSM-5 zeolites with different crystallite sizes

Loading next page...
 
/lp/springer_journal/control-of-the-properties-of-catalysts-for-methane-aromatization-by-SM8v0jhvs1
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Chemistry; Chemistry/Food Science, general; Organic Chemistry; Inorganic Chemistry
ISSN
1066-5285
eISSN
1573-9171
D.O.I.
10.1007/s11172-017-1983-5
Publisher site
See Article on Publisher Site

Abstract

MFI zeolite materials (ZSM-5) with crystal sizes in the range from 0.10 to 1.70 μm have been synthesized. Acidic and surface properties, phase and morphological composition of the prepared zeolites have been studied by the IR sprectroscopy, nitrogen porosimetry, XRD, and scanning electron microscopy. Increasing crystal size was shown to decrease the general acidity of the zeolite. Synthesized zeolites served as supports for molybden-containing catalysts for methane aromatization prepared by using the solid phase synthesis approach. Diffuse reflectance IR spectroscopy, thermoprogrammed desoption of ammonia and 27Al NMR spectroscopy were used to characterize the physicochemical properties of the catalysts. An increase in the crystallite size of the zeolite favors a decrease in the acidity of the catalysts and inhibits the formation of alumina molybdate during the catalyst preparation. As a result, a tendency to coke formation is suppressed and the performance of the catalysts in methane aromatization improved: methane conversion and aromatic hydrocarbon yield increase.

Journal

Russian Chemical BulletinSpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial