Control of the formation of ultrathin CoSi2 layers during the rapid thermal annealing of Ti/Co/Ti/Si(100) structures

Control of the formation of ultrathin CoSi2 layers during the rapid thermal annealing of... The initial Ti(8 nm)/Co(10 nm)/Ti(5 nm) structures formed on the Si(100) substrate by magnetron sputtering were subjected to two-stage rapid thermal annealing (RTA) in the nitrogen ambient. The samples of the structures were controlled using the time-of-flight SIMS, the Auger spectroscopy, scanning electron microscopy, X-ray dispersion microprobe analysis, and measurements of the layer resistance at each stage of annealing. At the RTA-1 stage (550°C, 45 s), a sacrificial layer formed on the surface. This layer consisted of the titanium (oxy)nitride coating, into which the residual impurities (O, C, and N) were forced out, and the transient Co-Si-Ti(TiO,TiN) layer with a high cobalt content and a low (trace) titanium content. After the selective removal of this sacrificial layer, the surface composition corresponded to monosilicide CoSi, which transformed into the highly conductive CoSi2 phase at the RTA-2 stage (830°C, 25 s). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Control of the formation of ultrathin CoSi2 layers during the rapid thermal annealing of Ti/Co/Ti/Si(100) structures

Loading next page...
 
/lp/springer_journal/control-of-the-formation-of-ultrathin-cosi2-layers-during-the-rapid-vUNPfaI34K
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739711060102
Publisher site
See Article on Publisher Site

Abstract

The initial Ti(8 nm)/Co(10 nm)/Ti(5 nm) structures formed on the Si(100) substrate by magnetron sputtering were subjected to two-stage rapid thermal annealing (RTA) in the nitrogen ambient. The samples of the structures were controlled using the time-of-flight SIMS, the Auger spectroscopy, scanning electron microscopy, X-ray dispersion microprobe analysis, and measurements of the layer resistance at each stage of annealing. At the RTA-1 stage (550°C, 45 s), a sacrificial layer formed on the surface. This layer consisted of the titanium (oxy)nitride coating, into which the residual impurities (O, C, and N) were forced out, and the transient Co-Si-Ti(TiO,TiN) layer with a high cobalt content and a low (trace) titanium content. After the selective removal of this sacrificial layer, the surface composition corresponded to monosilicide CoSi, which transformed into the highly conductive CoSi2 phase at the RTA-2 stage (830°C, 25 s).

Journal

Russian MicroelectronicsSpringer Journals

Published: Nov 9, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off