Control of somatic embryogenesis and embryo development by AP2 transcription factors

Control of somatic embryogenesis and embryo development by AP2 transcription factors Members of the AP2 family of transcription factors, such as BABY BOOM (BBM), play important roles in cell proliferation and embryogenesis in Arabidopsis thaliana (AtBBM) and Brassica napus (BnBBM) but how this occurs is not understood. We have isolated three AP2 genes (GmBBM1, GmAIL5, GmPLT2) from somatic embryo cultures of soybean, Glycine max (L.) Merr, and discovered GmBBM1 to be homologous to AtBBM and BnBBM. GmAIL5 and GmPLT2 were homologous to Arabidopsis AINTEGUMENTA-like5 (AIL5) and PLETHORA2 (PLT2), respectively. Constitutive expression of GmBBM1 in Arabidopsis induced somatic embryos on vegetative organs and other pleiotropic effects on post-germinative vegetative organ development. Sequence comparisons of BBM orthologues revealed the presence of ten sequence motifs outside of the AP2 DNA-binding domains. One of the motifs, bbm-1, was specific to the BBM-like genes. Deletion and domain swap analyses revealed that bbm-1 was important for somatic embryogenesis and acted cooperatively with at least one other motif, euANT2, in the regulation of somatic embryogenesis and embryo development in transgenic Arabidopsis. The results provide new insights into the mechanisms by which BBM governs embryogenesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Control of somatic embryogenesis and embryo development by AP2 transcription factors

Loading next page...
 
/lp/springer_journal/control-of-somatic-embryogenesis-and-embryo-development-by-ap2-RDvLIQTb4y
Publisher
Springer Netherlands
Copyright
Copyright © 2010 by The Author(s)
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-010-9674-8
Publisher site
See Article on Publisher Site

Abstract

Members of the AP2 family of transcription factors, such as BABY BOOM (BBM), play important roles in cell proliferation and embryogenesis in Arabidopsis thaliana (AtBBM) and Brassica napus (BnBBM) but how this occurs is not understood. We have isolated three AP2 genes (GmBBM1, GmAIL5, GmPLT2) from somatic embryo cultures of soybean, Glycine max (L.) Merr, and discovered GmBBM1 to be homologous to AtBBM and BnBBM. GmAIL5 and GmPLT2 were homologous to Arabidopsis AINTEGUMENTA-like5 (AIL5) and PLETHORA2 (PLT2), respectively. Constitutive expression of GmBBM1 in Arabidopsis induced somatic embryos on vegetative organs and other pleiotropic effects on post-germinative vegetative organ development. Sequence comparisons of BBM orthologues revealed the presence of ten sequence motifs outside of the AP2 DNA-binding domains. One of the motifs, bbm-1, was specific to the BBM-like genes. Deletion and domain swap analyses revealed that bbm-1 was important for somatic embryogenesis and acted cooperatively with at least one other motif, euANT2, in the regulation of somatic embryogenesis and embryo development in transgenic Arabidopsis. The results provide new insights into the mechanisms by which BBM governs embryogenesis.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 27, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off