Control of radiative base recombination in the quantum cascade light-emitting transistor using quantum state overlap

Control of radiative base recombination in the quantum cascade light-emitting transistor using... The concept of the quantum cascade light-emitting transistor (QCLET) is proposed by incorporating periodic stages of quantum wells and barriers in the completely depleted base–collector junction of a heterojunction bipolar transistor. The radiative band-to-band base recombination in the QCLET is shown to be controllable using the base–collector voltage bias for a given emitter–base biasing condition. A self-consistent Schrödinger–Poisson Equation model is built to validate the idea of the QCLET. A GaAs-based QCLET is designed and fabricated. Control of radiative band-to-band base recombination is observed and characterized. By changing the voltage across the quantum cascade region in the QCLET, the alignment of quantum states in the cascade region creates a tunable barrier for electrons that allows or suppresses emitter-injected electron flow from the p-type base through the quantum cascade region into the collector. The field-dependent electron barrier in the base–collector junction manipulates the effective minority carrier lifetime in the base and controls the radiative base recombination process. Under different quantum cascade region biasing conditions, the radiative base recombination is measured and analyzed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics B Springer Journals

Control of radiative base recombination in the quantum cascade light-emitting transistor using quantum state overlap

Loading next page...
 
/lp/springer_journal/control-of-radiative-base-recombination-in-the-quantum-cascade-light-PGwsTjAPEk
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Physics; Physics, general; Physical Chemistry; Optics, Lasers, Photonics, Optical Devices; Quantum Optics; Engineering, general
ISSN
0946-2171
eISSN
1432-0649
D.O.I.
10.1007/s00340-018-6985-y
Publisher site
See Article on Publisher Site

Abstract

The concept of the quantum cascade light-emitting transistor (QCLET) is proposed by incorporating periodic stages of quantum wells and barriers in the completely depleted base–collector junction of a heterojunction bipolar transistor. The radiative band-to-band base recombination in the QCLET is shown to be controllable using the base–collector voltage bias for a given emitter–base biasing condition. A self-consistent Schrödinger–Poisson Equation model is built to validate the idea of the QCLET. A GaAs-based QCLET is designed and fabricated. Control of radiative band-to-band base recombination is observed and characterized. By changing the voltage across the quantum cascade region in the QCLET, the alignment of quantum states in the cascade region creates a tunable barrier for electrons that allows or suppresses emitter-injected electron flow from the p-type base through the quantum cascade region into the collector. The field-dependent electron barrier in the base–collector junction manipulates the effective minority carrier lifetime in the base and controls the radiative base recombination process. Under different quantum cascade region biasing conditions, the radiative base recombination is measured and analyzed.

Journal

Applied Physics BSpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off